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INTRODUCTION 

A great number of diagnostic (discriminant) dia�
grams have been developed on the basis of the
geochemical composition of acid magmatic rocks for
deciphering the geodynamic settings of magmatism.
The most frequently applied classification diagrams
(Pearce et al., 1984; Batchellor and Bowden, 1985;
Harris et al., 1986; Whalen et al., 1987; Maniar and
Piccoli, 1989; Velikoslavinsky, 2003; and others) were
constructed exclusively for granitic rocks. The chemi�
cal identity of intrusive and volcanic rocks formed in
subduction and within�plate settings was demon�
strated only in [2]. However, special studies of the
validity of these diagrams for volcanic analogues (dac�
ites and rhyolites) have not been conducted yet. Some
reseachers [7] demonstrated that the application of
these diagrams to acid volcanic rocks may lead to
invalid conclusions. We encountered this problem
during the study of Late Cretaceous and Paleogene
ignimbrites of East Sikhote Alin [14]. Thus, a search
for reliable geodynamic interpretations of petro�
geochemcial data on acid volcanic rocks has remained
an urgent problem. The main problem in the system�
atics of acid magmatic rocks consists in the variability
and convergence of the petrogeochemical composi�
tion due to their polygenous origin and intense chem�
ical interaction with other rocks (and melts). Finally,
this may lead to the obliteration of the petrochemical
signatures of acid volcanic rocks of different geody�
namic settings.

STUDY RESULTS

According to the tectonic and geochemical (for
basalts) reconstructions of the Mesozoic–Cenozoic
evolution of the Asian continental margin, the Late
Cretaceous volcanic rocks were formed during sub�
duction, while the Paleogene rocks were derived in a
transform plate margin setting [16, 18]. Previous
works on the geochemical typification of Late Creta�
ceous and Paleogene acid volcanic rocks from East
Sikhote Alin (using the aforementioned diagnostic
diagrams for granitic rocks) led to ambiguous results
[4]. In most geochemical discriminant diagrams, the
data points of the volcanic complexes of different ages
occupy uncertain positions, plotting simultaneously in
the fields of the island� and continental volcanic arc
granitoids, as well as in the field of collisional and
within�plate granitoids. In this relation, we attempted
to construct discriminant petrochemical diagrams for
the acid volcanic rocks. In particular, the fields of Late
Cretaceous and Paleogene ignimbrites of East Sikhote
Alin are well distinguished in the diagrams (CaO +
MgO)–(K2O + Na2O) and (CaO + MgO)–(FeO +
Fe2O3) (Fig. 1). However, deciphering the geodynamic
settings of the ancient acid volcanism can be solved
only on the basis of generalization of the data on sim�
ilar rocks formed in modern suprasubduction, plate
sliding (transform plate margin), within�plate, and
spreading settings. The volcanism of collisional zones
was generated by the sliding of the lithospheric plates
during and after their collision.

The detection of petrochemical parameters was
caused by the behavior of the trace elements in the
acid melts. We agree with the conclusions in [29] that
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the existing geochemical classifications of granitic
rocks based on trace� and minor�element abundances
cannot unambiguously identify the magmatic source
or tectonic setting. Minor elements in acid melts,
unlike those in basalts, usually reveal incompatible
behavior [25]. REE, U, Th, and Zr are usually incor�
porated in such accessory minerals as apatite, zircon,
titanite, orthite, and monazite, while Nb and Y are
accumulated in oxides and amphiboles. Correspond�
ingly, their contents are determined by the crystalliza�
tion as a function of the extensive parameters (oxygen
and water fugacity). Crustal contamination affects the
concentrations of trace elements to a greater extent
than those of petrogenic oxides. Thus, the use of
minor elements and their ratios as factors of the classi�
fication of granitic rocks often cannot provide unam�
biguous identification of the magmatic source or geo�
dynamic setting.

Diagrams were constructed on the basis of 600 pub�
lished chemical analyses of diverse�facies acid volca�
nic rocks (tuffs, ignimbrites, lavas, and extrusive bod�
ies) formed in different geodynamic settings. The data
set included only acid volcanic rocks (SiO2 > 67 wt %)
unaltered by secondary processes with L.O.I. < 4 wt %.
Rocks representing fragments of glasses, fiamme, and
end members of highly differentiated melts and liquid
immiscibility products were omitted. The composition
was calculated to 100% water free. The molecular
amounts were calculated using the standard tech�
niques [20].

Numerous triangle and binary petrochemical dia�
grams were empirically compiled to obtain the most

informative Al2O3/(CaO + MgO) – /(CaO +
MgO) diagram (Fig. 2). In our opinion, the propor�
tions of Al, Fe, and sum of thermophile cations (Ca
and Mg) may serve as the major petrochemical criteria
for distinguishing between the rocks of different geo�
dynamic settings. As is seen in the presented diagram,

Fe2O3
Tot

the data points of the rocks with insignificant overlap�
ping define four main fields. The first field (I) includes
volcanic rocks related to island�arc and continental–
margin suprasubduction magmatism. They include
dacites and rhyolites from the Cascades (USA) [33],
ignimbrites from the volcanic front of the Andean belt
(Argentina, Bolivia, and Chile) [10, 28, 39, 40, 42],
and ignimbrites of Kamchatka (the Uzon and Semy�
achik Volcanoes) [9]. The second field (II) comprises
volcanic rocks from intra� and continental transform�
plate margins. They are represented by rhyolites of
extrusive domes and lava piles of Californian�type
Coso province in California in the United States [22],
as well as by rhyolites from the western coast of Amer�
ica (about 30 manifestations in Nevada, Utah, and
Idaho in the United States) [27] and the Yellowstone
supercaldera (Wyoming, USA) [26, 31, 41]. The third
field (III) encloses data on the within�plate alkaline
rocks, in particular, ignimbrites from the East African
rift system [38, 43], as well as pantellerites and comen�
dites from the Paektusan Volcano (Korea–China
boundary) [13], acid volcanic glasses and breccias
from the Kergelen plateau (Indian Ocean) [24, 37],
rhyolitic domes of the Red Sea [21], and rhyolites of
oceanic islands (Easter, Socorro, Ascension, Bouvet,
and others) [23, 36]. The fourth field (IV) is formed by
acid volcanics from spreading zones: rhyolites from
the Alcedo Volcano (Galapagos Islands) [30] and Ice�
land [6, 34, 35]. Thus, distinguished fields I–IV corre�
spond to the composition of the acid volcanic rocks of
modern geodynamic settings. 

The next step involved plotting the data points of
the Late Cretaceous ignimbrites of the Siyanovsky,
Levosobolevsky, Kamensky, and Primorsky Com�
plexes and the Paleogene ignimbrites of the Bogopol�
sky Complex (East Sikhote Alin) in the diagram. The
data set included our original [5, 32] and literature [1,
3, 8, 11, 12, 15, 19] data, as well as materials from geo�
logical reports. In the developed diagram (Fig. 2), the

140

120

100

80

60

40

20

80
CaO + MgO, molecular

K
2O

 +
 N

a 2
O

, 
m

ol
ec

ul
ar

(a)

0 20 40 60

80

60

40

20

80
CaO + MgO, molecular

F
eO

 +
 F

e 2
O

3,
 m

ol
ec

ul
ar

(b)

0 20 40 60

0

1

2
3

Fig. 1. Diagrams: (a) (Na2O + K2O)–(CaO + MgO) (molecular); (b) (Fe2O3 + FeO)–(CaO + MgO) (molecular).

Data points of acid volcanic rocks: (1) Turonian–Santonian Primorskaya Unit; (2) Campanian–Maastrichtian Siyanovsky,
Kamensky, and Levosobolevsky Volcanic Complexes; (3) Paleocene–Eocene Bogopolsky Volcanic Complex.
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data points of the Late Cretaceous volcanics fall in the
suprasubduction field (Field I), while the Paleogene
ignimbrites, in the field of transform�plate margin set�
tings (Field II) (Fig. 2c). The obtained data more reli�
ably supported the previous conclusions reached for
basalts [16, 28] than the manifestations of Late Creta�
ceous and Paleogene magmatism formed on the Asian
continental margin. These conclusions are confirmed
by geological and petrological studies of the acid vol�
canism of East Sikhote Alin on the Late Mesozoic–
Early Cenozoic boundary [3⎯5, 15, etc.].

The Turonian–Campanian volcanic rocks of the
Primorskaya Unit compose a linear structure of the
East Sikhote Alin volcanic belt. They are represented
by crystal�rich plateau ignimbrites of S�type rhyolites,
rhyodacites, and dacites formed due to high�volume
fissure eruptions of acid magmas [14]. They were gen�
erated in an oxidizing setting with the participation of
aqueous fluids typical of suprasubduction volcanism.
In the Campanian–Maastrichtian, the volcanic cen�
ters were localized within depression�type volcano�
tectonic structures superimposed onto the plateau

ignimbrite fields of the volcanic belt. This period was
marked by bimodal magmatism. The products of the
acid volcanism distinguished in the Kamensky,
Levosobolevsky, and Siyanovsky Complexes are repre�
sented by dacite–rhyolite tuffs and ignimbrites, while
the Samarga and Dorofeevsky Complexes are made up
of basalts, andesites, and dacites. The caldera�type
acid volcanics of this period were geochemically simi�
lar to the S�type plateau ignimbrites of the Primor�
skaya Unit. The rocks of the Paleocene–Early Eocene
explosive acid volcanism of the Bogopolsky Complex
fill collapsed calderas, being represented by tuffs,
hyaloignimbrites, and subvolcanic bodies of vitrophy�
ric dacites and rhyolites formed owing to the eruption
of S�type peraluminous acid magmas (at the initial
stage) and Fe�rich A�type melts (at the final stages).
The A�type high�Fe hyaloignimbrites of the Bogopol�
sky Complex bear well expressed mineralogical and
geochemical signatures of the interaction between
crustal magmas and the enriched sublithospheric
mantle. Their formation was presumably assisted by
reduced (essentially hydrogen) fluids [32] derived
from the enriched asthenosphere during the formation
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Fig. 2. Diagrams: (a, b) Al2O3/(CaO + MgO)– /(CaO + MgO) (molecular).

Fields I–IV are separated by lines taking their origin at the points with the following coordinates: (a) 1–0.5, 1000–60; 10–0.1;
10–100; (b) 1–0.22, 100–7; 1–100; 9–0.1.
(I) Zones of island�arc and continental�margin suprasubduction magmatism: rhyolites of Kamchatka (the Uzon and Semyachik
Volcanoes); Andean rhyolites (Chile, Bolivia, Argentina); rhyolites of the Cascades (northwestern USA). (II) Zone of transform
plate boundarys: within� and marginal continental types: rhyolites of extrusive domes and lava flows (California, USA); Topaz
rhylites from the western coast of North America (Idaho, Utah, and Nevada, USA): Yellowstone rhyolites (Western USA);
(III) Zones of within�plate magmatism of oceanic and continental types: rhyolites of Kergelen Island (Indian Ocean); alkaline
rhyolites from the Paektusan Volcano; alkaline rhyolites of the East African rift system; rhyolites of the Red Sea (Egypt); rhyolites
of oceanic islands; (IV) spreading zones: rhyolites of the Galapagos Islands; rhyolites of Iceland.
Symbols in Fig. 2b: (1) rhyolites of the East Sikhote Alin volcanic belt (the Primorsky, Siyanovsky, Kamensky, and Levosobolevsky
Volcanic Complexes); (2) rhyolites of the Bogopolsky Complex, Primorye.
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of acid crustal magmas. These signatures are typical of
extensional mantle and crustal magmatism produced
on a transform continental margin [17].

CONCLUSION

In this work, we reported the first results of the
empirical construction of discriminant diagram for
acid volcanic rocks, which confirms the chemical
peculiarity of the acid volcanic rocks formed in sub�
duction, within�plate, spreading, and transform plate
boundary settings. The first verification of this diagram
for the Late Cretaceous and Paleogene volcanics dem�
onstrated its applicability to tectonic reconstructions.
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