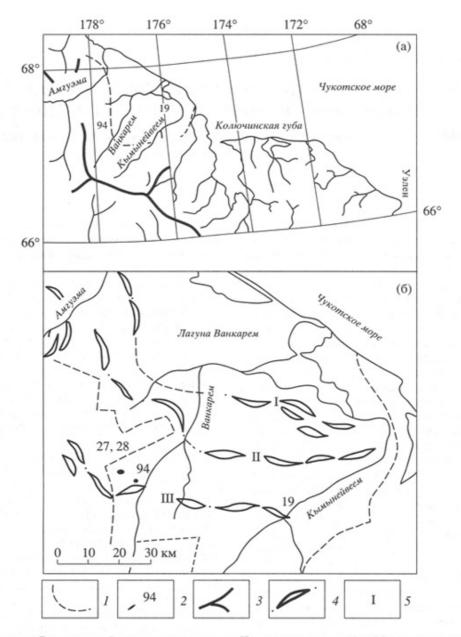
ГЕОГРАФИЯ

УДК 551.793:563.12:561.26:551.8 (4151268.56)

ПОСЛЕДНЕЕ ОЛЕДЕНЕНИЕ НА СЕВЕРЕ ВОСТОЧНОЙ ЧУКОТКИ И ПАЛЕООКЕАНОГРАФИЯ СЕВЕРНОЙ ПАЦИФИКИ

© **2006** ¹С.А. Лаухин, ²Цзян Чжимин, ³В.С. Пушкарь, ⁴М.В. Черепанова Представлено академиком Е.Е. Милановским 16.02.2006 г.


Поступило 16.02.2006 г.

Последнее оледенение на Северо-Востоке Азии имело ограниченные площади. Даже на Камчатке, где долинные ледники превышали 100 км, фирновая линия от высоты 700-800 м на п-ове Кроноцкий в 150-180 км к западу поднимается до 1000-1700 м. Для Чукотки же принимается североякутский механизм развития сартанского оледенения: считается, что оно было каровое [Верховская, 1986 и др.]. Лишь немногие [Глушкова, 1984] допускают там протяженность долинных ледников 15-20. редко до 50 км. В связи с этим выглядит необычным широкое развитие свежего ледникового рельефа, закартированного нами на Вакаремской низменности (рис. 1). Карта ледниковых форм рельефа опубликована [Laukhin, 1997]. Наиболее ярко проявлены три гряды стадиальных конечных морен (I, II и III гряды на рис. 1). На западе низменности к северу от III гряды разрез изучен по серии шахт 27, 28, 94 и др. Моренный вал III гряды залегает на основной морене II гряды. Ниже вскрыты озерно-ледниковые алевриты, связанные с І грядой, еще ниже - аллювий, из которого получены ¹⁴С-даты 40.1-39.3 тыс. лет назад (т.л.н.). Следовательно, все три вышележащие морены моложе 39 т.л.н. Из озерно-ледниковых алевритов аллювием получены над палиноспектры арктических тундр, а из аллювия - спектры кустарниковых тундр и ольховников, т.е. растительности теплолюбивой, чем современная (травянистые тундры). По расчетам В.А. Климанова [Laukhin et al., 1999] в каргинское время (аллювий) температуры июля превышали современные на 2-5 до 6°С. Во время 1-й стадии оледенения (I гряда) летние температуры были близки

современным, зимние на 2°C ниже их, но годовая сумма осадков превышала современную на 100-150 мм, что и стало причиной выхода ледников на низменность. Для уточнения возраста нижней морены (I гряда) важна находка в этой морене в керне скв. 19 (рис. 1) артефактов, датированных [Laukhin & Drozdov, 1991] ~30 т.л.н., а также то, что в скв. 19 она подстилается и перекрывается отложениями позднекаргинской [Пушкарь и Черепанова. 2001 ингрессии, которая проникала по пра-долине Кымынейвеема. Следовательно, возраст трех морен покровного предгорий низменности оледенения на определен достаточно уверенно: 1-я стадия конощельское похолодание каргинского средневисконсинского) (средневюрмского, времени, 2-я и 3-я стадии - сартанское (поздневюрмское, поздневисконсинское) время. Посмотрим, как менялся климат северного полушария во 2-й половине позднего плейстоцена и в каких условиях развивалось оледенение на севере Чукотки. На рис. 2 показаны начало, конец и продолжительность потеплений и похолоданий последних 50-60 тыс. лет (т.л.) от Гренландии до Чукотки. разных Естественно, что В местах зависимости от широты, рельефа и других факторов эти события проявились по-разному. Поэтому обсудим наиболее обобщенные схемы для крупных регионов от Арктики до 42° с.ш. (рис. 2). В ледовом керне площади Саммит в грубой схеме выделяется 8(11) потеплений и 8(9) похолоданий. Пики изотопно-кислородной кривой этого керна прокоррелированы до Центральной Европы [Dansgaard et al., 1993], проследим их дальше на восток, начиная со

¹Институт проблем освоения Севера Сибирского отделения Российской Академии наук, Тюмень; ²Университет Тонгджой, Китай;

³Геологический институт Дальневосточного отделения Российской Академии наук, Владивосток ⁴Биолого-почвенный институт Дальневосточного отделения Российской Академии наук, Владивосток

Рис. 1. Расположение Ванкаремской низменности на севере Чукотского полуострова (а) и моренных гряд последнего оледенения на этой низменности (б). I — граница Ванкаремской низменности на а и граница Ванкаремской впадины на 6; 2 — положение шахт 27, 28, 94 и скв. 19 (на а и б); 3 — основные горные хребты на а; 4 — моренные гряды 1—3-й стадий последнего оледенения на Ванкаремской низменности на 6; 5 — номера моренных гряд на 6 — см. текст.

среднего потепления, так как для обсуждаемой проблемы 1-я половина среднего вюрма не так уж важна.

Среднее потепление было продолжительным в Европе, продолжительнее в Западной Сибири (6-7 т.л.) и самым долгим (до 10 т.л.) в Средней Сибири и на юго-востоке Северной Азии. На северо-востоке Азии оно сокращается до 5.5-6 т.л. В Гренландии в интервале 44-35 т.л.н. отмечено более трех похолоданий и трех потеплений, в Восточной Европе им соответствуют два потепления и одно (два?) похолодание. В Северной Азии это потепление не делится похолоданиями. При этом в Средней Сибири и восточнее это потепление было оптимальным в среднем вюрме. С этим потеплением на севере Западной Сибири совпадает максимум каргинской

трансгрессии с теплолюбивой и богатой фауной фораминифер [Волкова и др., 2003]. На севере Чукотки ингрессия моря по пра-Кымынейвеему, вероятно, тоже была максимальной, в скв. 19 из ее слоев изучены диатомеи [Пушкарь и Черепанова, 2001].

Последующее похолодание имело сложную структуру в Гренландии и Европе. На площади Саммит похолодания 33-32 и 31-30.5 т.л.н. разделены потеплением IS6. В Восточной Европе это похолодание кончается 32-31 т.л.н.; начало же его у разных авторов имеет большой разброс: 33 т.л.н. [Величко и др., 1999], 33.5 т.л.н. [Краснов и др., 1984], 36 т.л.н. [Арсланов, *1992*]. Ha Русской равнине потеплению (35-33)Денекамп т.л.н.) соответствует михаиловское (36-32)т.л.н.) похолодание [Арсланов, 1992].

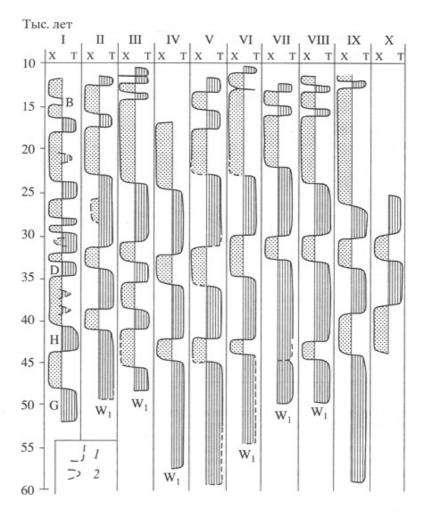


Рис. 2. Схема времени начала, продолжительности и завершения потеплений и похолоданий во 2-й половине позднего плейстоцена умеренной и арктической зон северного полушария. X − похолодания, T − потепления, W₁ − оледенение раннего вюрма−висконсина; I − предполагаемое потепление (похолодание), 2 − крупные потепления в интервале похолодания или похолодания в интервале потепления; В − Беллинг, D − Денекамп, H − Хенгело, G − Глинде [7]; I−X − крупные регионы северного полушария: I − площадь Саммит в Гренландии, скоррелировано с Центральной Европой [7], II − центральные и северные районы Русской равнины [8], III − Русская равнина [11], IV − Русская равнина [10], V − Западно-Сибирская равнина [13], VI − Западно-Сибирская равнина [12], VII − Средняя Сибирь [9], VIII − юговосток Северной Азии, по А.М. Короткому [14], IX − северо-восток Азии [14], X − бассейн верхнего течения Колымы [15].

Та же картина в Западной Сибири: 35-31(30) т.л.н. отмечается [Архипов и др., 1999; Волкова $u \partial p$., 2003] интенсивное похолодание. В Средней Сибири и восточнее это похолодание имело одинаковый возраст 33-30 т.л.н. [Кинд, 1974; Позднечетвертичная..., 2002; Anderson & Lozhkin, 2001]. При этом на Верхоянском хребте горно-долинные ледники жиганской стадии (33-31)т.л.н.) местами имели распространение максимальное в плейстоцене [Кинд, 1974 и др.]. В континентальных районах на востоке Азии похолодание 33- 30 т.л.н. было также сильное [Позднечетвертичная..., 2002]. Поэтому не удивительно, что около 30 т.л.н. ледник на Ванкаремской низменности имел такое большое распространение (І моренная гряда). Последнее потепление среднего вюрма начинается и кончается раньше в Европе.

Обсудим, какие палеогеографические факторы могли обусловить развитие оледенения конца среднего и позднего вюрма на Ванкаремской низменности.

Североякутский тип развития последнего оледенения обусловлен недостатком влаги для формирования крупных наземных ледников. Этот недостаток объясняется тем, что во время оледенения северный последнего востока Азии осушался на 300-700 км севернее, а в Беринговом море на 600-850 км южнее Чукотского п-ова. Однако это - максимум регрессии, но и он имеет широкие пределы. В ходе же регрессии море отступало постепенно и осушенный шельф довольно долго достигал своих максимальных размеров. Рассмотрим влияние регрессии на течения в Северной Пацифике.

В настоящее время север Чукотского п-ова омывают ответвления Западно-Арктического холодного течения (рис. 3). С юга теплое Северо-Тихоокеанское течение переходит в Аляскинское, западнее в Алеутское. Воды этих течений, проникая между островами Алеутской гряды, образуют в Беринговом море Поперечное, Лаврентийское, Танага и Отту теплые течения, которые выхолаживаются с

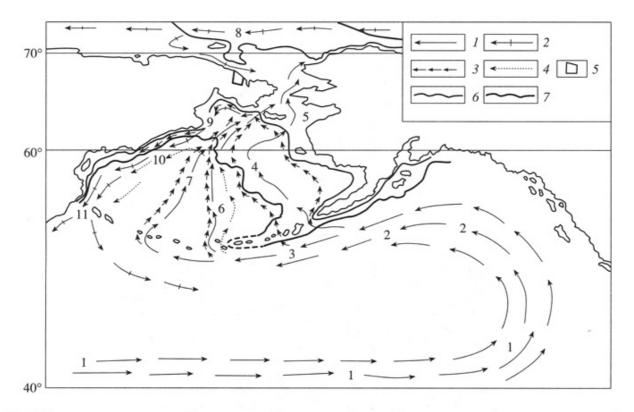


Рис. 3. Схема современных течений и палеотечений вюрма–висконсина в Беринговом море. Современные течения: *I* − теплые (1−7) и 2 − холодные (8−11): 1 − Северо-Тихоокеанское, 2 − Аляскинское, 3 − Алеутское, 4. Поперечное, 5 − Лаврентия, 6 − Танага, 7 − Отту, 8 − Западно-Арктическое, 9 − Анадырское, 10 − Камчатское, 11 − Ойясио; *3* − течения во время максимально высокого (−50 м) уровня моря в среднем вюрме–висконсине [15]; *4* − течения во время максимально низкого (−100 м) уровня моря − регрессия в максимум последнего оледенения; *5* − положение Ванкаремской низменности; *6* − береговая линия при уровне моря −50 м [15]; *7* − береговая линия при уровне моря −100 м.

приближением к Чукотскому п-ову и от него возвращаются в Пацифику вдоль западного побережья моря в виде холодных течений Анадырского, Камчатского Ойясио. всего Считается, течение что в вюрма (висконсина) Берингийский мост замыкал все эти течения к югу от о-ва Святого Лаврентия и Чукотского п-ова. Известно [Anderson & Lozhkin, 2001], что максимально высокий уровень Берингова моря в среднем вюрме был на 50 м ниже современного. Не будет ошибкой предположить, что по времени максимальный уровень Берингова моря совпадал максимально теплым на востоке Северной Азии средним потеплением, т.е. приходится на 40-33 т.л.н. В то время Аляскинское и Алеутское течения не уходили на север, как теперь, а омывали с юга Чукотский п-ов (рис. 3) и могли приносить достаточно влаги для формирования в горах Чукотского п-ова ледников Корякско-Этим обусловлено Камчатского типа. максимальное продвижение ледников Ванкаремскую низменность около 30 т.л.н. Однако в самом начале позднего вюрма летом влажные ветры с Пацифики могли все еще приносить на Чукотский п-ов достаточно влаги для выхода ледников на низменность. 2-я и 3-я

морены на юге Ванкаремской низменности фиксируют этапы регрессии от -50 до -100 м. И только с максимума позднего вюрма оледенение Чукотского п-ова стало развиваться по североякутскому типу. Таким образом, 1-я стадия последнего оледенения на Ванкаремской низменности (І гряда) фиксирует начало похолодания еще во время минимальной величины регрессии в вюрме Берингии; 2-я и 3-я стадии - этапы постепенного снижения регрессии от -50 м до -100 м в начале позднего вюрма (висконсина).

Последующая регрессия позднего вюрма отодвинула южный берег Берингии почти до мыса Наворин на юге и почти на 300 км севернее современного берега Чукотского пова. В это время область высокого давления из Сибири переместилась в Арктику. Это, несомненно, повлекло за собой формирование субмеридиональных муссонных ветров, а следовательно, и изменения в системе поверхностных течений в Северной Пацифике.

Работа выполнена на средства гранта РФФИ-ГФЕН_а-02-05-39006 и завершена при частичной поддержке гранта РФФИ - 04-06-80024.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Верховская Н.Б.* Плейстоцен Чукотки. Владивосток: ДНЦ АН СССР. 1986. 116 с.
- 2. Глушкова О.Ю. В сб.: Морфология и палеогеография позднеплейстоценовых оледенений Северо-Востока СССР. Магадан: СВКНИИ СО АН СССР. 1984. С. 28-43.
- 3. *Laukhin S.A.* // Quatern. Intern. 1997. V. 41/42. P. 33-41.
- 4. *Laukhin S.A., Klimanov V.A., Belaya B.V.* // Antropozo-ikum. 1999. V. 23. P. 17-24.
- 5. Laukhin S.A., Drozdov N.I. // Prehistory and Ancient History. 1991. V. 1. № 6. P. 175-186.
- 6. *Пушкарь В.С., Черепанова М.В.* Диатомеи плиоцена и антропогена Северной Пацифики. Владивосток: Дальнаука. 2001. 222 с.
- 7. Dansgaard W., Johnsen S.J., Clausen H.B. et al. // Nature. 1993. V. 364. P. 218-220.
- 8. *Краснов И.И., Заррина Е.П., Спиридонова Е.Н.* В сб.: Стратиграфия СССР. Четвертичная система. Л.: Недра, 1984. Т. 2. С. 85-95.
- 9. *Кинд Н.В.* Геохронология позднего антропогена по изотопным данным. М.: Наука. 1974. 225 с.

- 10. *Арсланов Х.А.* В сб.: Геохронология четвертичного периода. М.: Наука, 1992. С. 10-19
- 11. Величко А.А., Ахлестина Е.Ф., Борисова О.К. и ∂p . В сб.: Изменение климата и ландшафтов за последние 65 миллионов лет. М.: Геос, 1999. С. 43-83.
- 12. *Архипов С.А.*, *Волкова В.С.*, *Зольников И.Д. и др.* В сб.: Изменение климата и ландшафтов за последние 65 миллионов лет. М.: Геос, 1999. С. 84-109.
- 13. Волкова В.С., Архипов С.А., Бабушкин А.Е. и др. Стратиграфия нефтегазоносных бассейнов Сибири. Кайнозой Западной Сибири. Новосибирск: Гео, 2003. 248 с.
- 14. Позднечетвертичная растительность и климаты Сибири и Российского Дальнего Востока (палинологическая и радиоуглеродная база данных). Магадан: СВНЦ ДВО РАН. 2002. 369 с.
- 15. *Anderson P.M., Lozhkin A.V.* // Quaternary Science Review. 2001. V. 20. № 1/3. p. 93-125.

Ссылка на статью:

Лаухин С.А., Чжимин Ц., Пушкарь В.С., Черепанова М.В. Последнее оледенение на севере Восточной Чукотки и палеоокеанография Северной Пацифики. Доклады Академии Наук, 2006, том 411, № 3, с. 405-409.

pdf взят с сайта http://www.evgengusev.narod.ru/chukchi/lauhin-2006.html