УДК 552.4.072:681.3

0.00

К.В. Чудненко, О.В. Авченко

© К.В. Чудненко, О.В. Авченко

ОЦЕНКА УСЛОВИЙ ФОРМИРОВАНИЯ МЕТАМОРФИЧЕСКИХ ПОРОД МЕТОДОМ ТЕРМОДИНАМИЧЕСКОГО

Введение

МОДЕЛИРОВАНИЯ

Любая метаморфическая порода в системном плане представляет собой сложную систему [5], анализ формирования которой сопряжен с множеством не до конца количественно идентифицированных параметров, включая состав метаморфогенного флюида, Т-Р условия, режим подвижности тех или иных компонентов, окислительный потенциал флюида, буферный окислительный потенциал минерального парагенезиса и т.д. Обычно с учетом имеющегося петрологического и геохимического материала имеются приблизительные оценки этих величин, полученные с той или иной степенью точности и надежности.

Несмотря на наличие в петрологической литературе разнообразных уравнений и компьютерных программ, предназначенных для определения Р-Т условий и величин парциальных давлений флюидных компонентов, при которых формировались минеральные ассоциации [10, 11, 13, 15, 16, 18, 20], проблема нахождения подобной информации для многих минеральных парагенезисов остается попрежнему востребованной задачей. Это обусловлено отсутствием в реальных природных парагенезисах определенных минеральных фаз, без которых количественная оценка Р-Т условий и флюидного режима на основе классической термобарометрии [7] становится невозможной. Например, в кварцитогнейсе с парагенезисом Gr+Sill+Bi+Kfs+Qv (где Gr – гранат, Sill – силлиманит, Bi – биотит, Kfs – калишпат, Qv – кварц, Amph – амфибол, Pl – плагиоклаз, Ру – пироксен, Bi – биотит, Ilm – ильменит) нельзя оценить величину общего давления, величину парциального давления воды и величину фугитивности кислорода, поскольку необходимые для такого определения минеральные фазы – плагиоклаз, кордиерит, магнетит, ильменит в этом парагенезисе отсутствуют.

Обращалось внимание на частое отсутствие в гранулитовых минеральных ассоциациях магнетита [4], что затрудняет оценку величины фугитивности кислорода в этих парагенезисах на основе классических фугометров. Особую сложность представляет оценка Р-Т параметров и флюидного режима

основных кристаллосланцев, вследствие распространения в них, главным образом, маломинеральных, бескварцевых ассоциаций, как, например, -Amph+Pl, Amph+Pl+Py, Gr+Amph, Gr+Amph+Pl, Amph+Bi+Pl, Amph+Pl+Py+Bi. В подобных парагенезисах на основе классической термобарометрии более или менее надежно возможно определение только температуры. Кроме того, на основе классического подхода [7] нельзя строго доказать равновесность в термодинамическом смысле того или другого минерального парагенезиса.

Таким образом, востребованность подхода, позволяющего определять условия и ТР-параметры формирования метаморфических пород средствами компьютерного моделирования, не вызывает сомнения.

Описание методики

Нами на протяжении двух десятилетий развивается подход имитационного компьютерного моделирования физико-химических условий минералообразования в метаморфических породах на основе метода моделирования минимизации термодинамических потенциалов [2, 8]. Дальнейшим развитием этого направления является предлагаемый в данной работе способ оценки условий образования минеральных ассоциаций, когда в рамках единой постановки совместно учтены поиск различных сценариев взаимодействия флюидов разного состава с исходным составам силикатной матрицы и расчет ТР-параметров решением обратной задачи термодинамического моделирования. Новизна подхода к определению условий формирования метаморфических пород заключается в том, что для расчета Р-Т условий и парциальных давлений флюидных компонентов учитывается вся возможная информация по данному минеральному парагенезису: химический состав породы, наблюдаемый количественный минералогический состав, параметры состава минералов железистость (Fe/Fe+Mg) железомагнезиальных минералов, глиноземистость (Al/Al+Mg+Fe+Ti+Si) амфиболов, пироксенов, биотита, хлорита, кальциевость (Ca/Ca+Na) амфиболов и клинопироксена,

Моделирование геообъектов и геопроцессов

кальциевость (Ca/Ca+Mg+Fe+Mn) и марганцовистость (Mn/ Ca+Mg+Fe+Mn) граната, титанистость (Ti/Ti+Fe+Mg+Si+Al) биотита, окисленность (Fe⁺³/ Fe+3+Ti+Fe+2+Mg+Mn) ильменита, натровость (Na/Na+K) калишпата и мусковита, основность (Ca/Ca+Na) или номер плагиоклаза. Это приводит к возможности оценки условий образования по P-T параметрам и флюидному режиму практически любой минеральной ассоциации и более строгому доказательству термодинамического равновесия в данном образце. Данная процедура может рассматриваться как задача идентификации условий формирования эталонного образца метаморфической породы. Основным критерием поиска оптимального решения является нахождение максимального приближения наблюдаемого и рассчитанного минерального парагенезиса по всему набору заданных идентифицирующих параметров.

Вычисление основано на трехуровневом алгоритме автоматического поиска параметрических условий формирования метаморфической породы (рис. 1):

- задание алгоритма идентификации состава внешнего флюида и интервала возможного изменения температуры и давления;
- вычисление значений температуры и давления при фиксированном составе флюида;

 определение качественного и количественного составов внешнего флюида и минерального парагенезиса с расчетными значениями ТРпараметров.

На начальном уровне задается определенный состав внешнего флюида, который будет воздействовать на неизмененную породу. В действительности реальный состав флюида практически всегда неизвестен, поэтому вначале заводится вектор, в котором учтены приблизительные соотношения основных компонентов: H₂O, CO₂, CO и др. В дальнейшем в зависимости от имеющейся петрологической информации возможно задавать последовательное изменение состава флюида, включая добавление или исключение отдельных компонентов, с тем чтобы исследовать все основные режимы взаимодействия флюид/порода, позволяющего изучить вклад различных внешних факторов на формирование метаморфической породы (разные степени f_{02} , парциальные давления H₂O, CO₂, и др. газов и т.д.).

На втором уровне проводится расчет ТРпараметров для исследуемого образца породы с набором летучих компонентов, задаваемых каждым сгенерированным модельным составом флюида. В математическом описании задача может быть отнесена к специальному классу задач в теории распознавания образов – методу сравнения с прототипом [6, 9],

Рис. 1. Схема алгоритма расчета параметрических условий формирования метаморфической породы. Фл_i – метаморфогенный флюид; f_i(T, P) – блок расчета T-P-параметров при взаимодействии флюида Фл_i с породой; i = 1, n; n – количество сценариев с участием флюидов различного состава; m – количество расчетных T-P точек; z – определение оптимального состава внешнего флюида и T-P условий формирования метаморфической породы

Nº 2

где в качестве эталона выбирается реальный образец породы, представленный вектором основных параметров и химического состава. Получаемые в результате решений экспериментальные (модельные) образцы породы для различных ТР и составов флюида представляют набор распознаваемых классов. Мера близости между объектами классификации и заданным эталоном устанавливается в зависимости от выбранного метрического расстояния между ними, которое во многом определяет результаты классификации.

Идентификация термобарических условий производится решением задачи нахождения минимума функции *f*, определяющей близость смоделированного состава породы к эталону при различных Т и Р из заданного интервала D_{тр} для фиксированного состава флюида:

 $f = \min(\sqrt{\sum_{i} w_{i}(A_{i} - B_{i})^{2} + \sum_{j} (A_{j} - B_{j})^{2}}), i \in P, j \in C,$ где A – эталон (реальная порода), B – модельный расчет, P – множество параметров состава минералов, C – множество данных количественного химического состава породы. Весовые коэффициенты w_{j} позволяют приписать определенный вес параметру пропорционально степени важности признака в задаче классификации. Если такая дополнительная информация отсутствует, все w_{j} принимаются равными единице.

Принято целесообразным использовать комбинированную меру расстояния: взвешенное евклидово расстояние (для параметров состава минералов) и квадрат евклидова расстояние (для состава породы). Обычно вторая мера расстояния используется в тех случаях, когда требуется придать больше значение более отдаленным друг от друга объектам. Но в данном случае, поскольку определение параметров производится в относительных единицах в интервале (0, 1), то вторая мера, наоборот, представляет меньший вклад в общий функционал. Таким образом, состав минералов (параметры) вносит более весомый вклад в нахождение решения, чем значение количества минералов в породе. Такое соотношение принято в связи с тем, что определение состава минералов наиболее надежная и выверенная информация, доступная практически любому петрологу. В случае же с химическим составом породы, определенный люфт заложен на точность силикатного анализа, определение степени окисленности, не всегда полной и объективной оценке роли летучих компонентов в формировании породы и других факторов, увеличивающих степень погрешности исходных данных.

Задача определения равновесного состава породы при фиксированных Т, Р и составе флюида

решается путем минимизации энергии Гиббса системы для модельного расчета образца породы (В). Приведенный потенциал энергии Гиббса минеральной системы имеет вид [2]:

$$G(x) = \sum_{j \in S} \left(\frac{g_j}{RT} + \ln a_j^{id} + \ln \gamma_j \right) x_j,$$

где g_j – стандартный изобарно-изотермический потенциал *j*-го компонента; a_j^{id} – активность минала *j* в минерале при идеальном смешении, позволяющая учитывать вклады в идеальную активность конфигурационных факторов; γ_j – коэффициент активности; x_j – мольное количество *j*-го минала; *S* – множество индексов *j*, обозначающее компоненты минеральной системы. В случае однопозиционных твердых растворов активность равна молярной доле минала в минеральной фазе $a_j^{id} = x_j / X\alpha$, где $X\alpha$ – мольное количество фазы α твердого раствора.

Определение оптимального состава внешнего флюида с расчетными значениями температуры и давления формирования метаморфической породы (третий уровень) связано с решением задачи одномерной минимизации полученных значений функций f по всем из исследованных составов флюида:

$$z = \min f$$

где F – множество составов внешнего флюида.

На практике нельзя исключить случая, когда в силу тех или иных причин (неточного задания схемы возможной эволюции состава флюида, нечеткого определения условий поиска области ТР, недостаточной полноты модели и т.д.) возможно получение достаточно грубого приближения решения к реальному образцу, что характеризуется большим значением критериальной функции и может служить сигналом, что требуется дальнейшее исследование системы с модифицированным набором исходных данных.

Численный пример

В качестве примера рассмотрим задачу определения условий образования минеральных парагенезисов в трех образцах горных пород из охотского гранулитового комплекса [1]. Данные породы представлены гнейсами и кварцитогнейсами с парагенезисами Gr+Bi+Pl+Sill+Kfs+Qv+Ilm (обр. 251-A), Gr+Bi+Pl+Kfs+Qv (обр. A-433-1) и Gr+Bi+Sill+Kfs+Qv (обр. 441-г). Химические анализы данных пород приводятся в табл. 1, а химические анализы минералов – в табл. 2.

Таблицы 3 и 4 представляют собой результаты вычисления по предложенному алгоритму. При расчете использовались базы термодинамических данных и модели минеральных твердых растворов, рассмотренных в работах [2, 3], причем блок моделей твердых растворов был существенно расширен, п.п.п.

Σ

Полевой номер	251-A	441-г	A-433-1									
SiO_2	56,50	81,82	70,27									
TiO ₂	1,16	0,38	0,68									
Al ₂ O ₃	19,88	9,30	12,76									
Fe ₂ O ₃	2,69	1,31	1,21									
FeO	5,60	3,07	4,56									
MnO	0,30	0,09	0,04									
MgO	3,42	1,34	1,82									
CaO	1,10	0,04	2,38									
Na ₂ O	2,61	0,04	2,70									
K ₂ O	5,95	1,02	1,82									
P ₂ O ₅	0,08	0,05	0,15									

Примечание: Анализы выполнены в лабораториях Аналитического центра ДВГИ ДВО РАН сотрудницей Алексеевой Л.И.

0,50

99.79

0,95

99.41

1,11

99.50

согласно последним работам в области термодинамики биотита [19] и клино- и ортоамфиболов [14].

В табл. 3 приводится сопоставление реальных (природных) минеральных ассоциаций по количеству и набору минералов с модельными парагенезисами. Количественный состав реальных парагенезисов, показанный в табл. 3, находился расчетным методом по разработанной нами сервисной программе MC, основанной на минимизации невязок в уравнениях баланса масс состава породы и кристаллохимических формул минералов. Какая либо входная термодинамическая информация в этой программе отсутствует. Подобный метод пересчетов минерального состава, используемых в петрологических исследованиях, применялся в программе MINSQ [17], и он был модифицирован с учетом специфики решаемых задач.

В табл. 4 даются рассчитанные оценки условий образования данных минеральных парагенезисов (данные по P-T и флюидному режиму) и приводится сопоставление состава реальных минералов по железистости, кальциевости, марганцовистости граната, железистости, титанистости биотита и номеру плагиоклаза (эти параметры также представлены в табл. 2) с модельными минеральными ассоциациями. Фундаментальный факт соответствия количественного набора минералов в парагенезисах и параметров состава минералов между реальными и модельными ассоциациями (табл. 3, 4) свидетельравновесию реальных парагенезисов, так и о согласованности всех термодинамических данных, принятых при решении данной задачи. Высокая степень сходимости реальных и модельных парагенезисов повышает степень доверия и к вычисленным условиям их образования. Оценки Р-Т во всех трех образцах гранулитов оказались близкими (табл. 4) при их высокой восстановленности (на уровне графитового буфера). Характерно невысокое отношение флюид/порода во всех моделях – в пределах 0,05-0,1 (вес. %). Высокая восстановленность минеральных ассоциаций подчеркивается отсутствием магнетита в реальных парагенезисах и низким содержанием (до 0,07 ф.е.) трехвалентного железа в ильмените (табл. 2). Отметим, что величину давления и параметры флюидного режима в обр. А-433-1, 441-г, а также уровень фугитивности кислорода и отношение флюид/порода во всех образцах на основе классической термобарометрии найти невозможно. Гранат-биотитовая термометрия по Л.Л. Перчуку [7] дает для данных минеральных парагенезисов температуры в 650-690°С. Одновременное определение Р-Т оценок в обр. 251-А по программе РЕТ [12] приводит к оценкам 6,3-7,1 кбар и 670 °С (геобарометры Gr+Bi+Pl+Qv и Gr+Pl+Sill+Qv, Gr-Bi термометр). Некоторые отличия в определении условий образования минеральных ассоциаций классическим и предлагаемым методами объясняются как различием самих подходов, так и использованием в расчетах входных термодинамических данных из разных источников.

ствует как о хорошем приближении к химическому

Заключение

Предлагаемый подход к проблеме оценки условий формирования метаморфических пород опирается на решение обратной задачи термодинамического моделирования на основе модельного расчета реальных минеральных ассоциаций в зависимости от входных данных по химическому составу породы и внешнего метаморфогенного флюида, параметров минералов, возможных интервалов Р-Т условий минералообразования. В вычислительном плане реализация расчетной процедуры алгоритма подразумевает решение большого количества прямых задач, что, в свою очередь, связано с определенными временными затратами. Однако мощность современных вычислительных систем делает данное ограничение не существенным.

Верификацией решения задачи является сопоставление набора и состава минералов в модельном парагенезисе с реально наблюдаемой минеральной ассоциацией и сравнение получающихся в процессе моделирования данных по P-T условиям и флюидному

Таблица 1

Химические составы пород

,	\sim
	Ia
	Н
1	5
	ğ
	—

Химические анализы минералов и их кристаллохимические формулы в обр. 251-А, 441-г, А-433-1

	Plag	18	58,70	0	13,86	0	0	0	6,22	7,62	0,37	96,77	2,701	0	,294	0	0	0	0),307),680),022			0,31	
	i-k]	17	4,87 5	,02	7,76 2	5,40	0	1,49	0	0	.91	3,45 5	685 2	175	612 1	056	0	0	319	0 0	0 0	974 0				,44
33-1	E B		34 3	1 3	15 17	35 16		50 11			3 9	48 93	53 2,	46 0,	58 1,	25 1,			14 1,			83 0,				8 0
A-43	Bi	16	34,3	4,2	17,]	17,3	0	10,5	0	0	6,6	93,4	2,6($0,2^{4}$	1,5([1,1]	0	0	1,2]	0	0	96'0				0,4
	Gr	15	36,50	0	20,73	33,80	0,74	4,74	1,37	0	0	97,88	2,969	0	1,987	2,224	0,075	0,051	0,575	0,119	0	0	0,79	0,040		
	Gr	14	36,98	0	21,30	33,22	0,50	4,96	1,63	0	0	98,59	2,975	0	2,020	2,206	0,029	0,034	0,595	0,141	0	0	0,79	0,047		
	Kfs	13	63,41	0	18,02	0	0	0	0	1,61	15,42	98,46	2,983	0	0,999	0	0	0	0	0	0,147	0,925				
	Bi	12	35,05	2,26	17,95	18,06	0	10,62	0	0	10,01	93,95	2,705	0,131	1,632	1,165	0	0	1,222	0	0	0,985				0,49
441-r	Bi	11	34,15	2,87	17,46	18,6	0	9,79	0	0	10,27	93,14	2,68	0,169	1,615	1,221	0	0	1,145	0	0	1,028				0,52
	Gr-c	10	37,36	0	21,02	33,29	1,4	5,98	0.6	0	0	99,65	2,967	0	1,968	2,114	0,097	0,094	0,708	0,051	0	0	0,75	0,017		
	Gr-c	6	36,75	0	20,87	33,51	1,76	5,06	0,55	0	0	98,5	2,97	0	1,988	2,192	0,073	0,12	0,61	0,048	0	0	0,78	0,016		
	Kfs	~	61,63	0	18	0	0	0	0	1,99	13,43	95,05	2,978	0	1,025	0	0	0	0	0	0,186	0,828				
	Ilm	7	0	48,9	0	45,81	1,32	0	0	0	0	96,03	0	0,965	0	0,936	0,07	0,029	0	0	0	0				
	Plag	9	60,24	0	23,65	0	0	0	5.05	8,49	0,19	97,62	2,737	0	1,267	0	0	0	0	0,246	0,748	0,011			0,25	
V	Bi-k	5	35,49	4,2	16,52	11,73	0	15,58	0	0	8,61	92,13	2,692	0,24	1,477	0,744	0	0	1,762	0	0	0,833				0,30
251-	Bi	4	35,78	4,82	15,89	12,21	0	13,72	0	0	9,49	91,91	2,74	0,278	1,434	0,782	0	0	1,567	0	0	0,927				0,33
	Gr-c	3	37,87	0	21,04	26,86	1,29	8,68	0,78	0	0	96,52	3,024	0	1,98	1,794	0	0,087	1,033	0,067	0	0	0,63	0,022		
	Gr-r	2	37,84	0	20,6	27,95	1,49	7,06	0,71	0	0	95,65	3,068	0	1,968	1,895	0	0,102	0,853	0,062	0	0	0,69	0,021		
	Gr-c	-	38,31	0	21,25	26,92	1,43	8,07	1,05	0	0	97,03	3,043	0	1,989	1,788	0	0,096	0,956	0,089	0	0	0,65	0,030		
Ne	Min	№ п/п	SiO_2	TiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ 0	Сумма	Si	Τï	Al	Fe^{+2}	Fe^{+3}	Mn	Mg	Ca	Na	K	X^{Gr}_{Fe}	X^{Gr}_{Ca}	X^{Pl}_{An}	X^{Bi}_{Fe}

Примечание. Анализы выполнены в Аналитическом центре ДВГИ ДВО РАН на микрозонде JEOL 8100 Вахом А.С., Бадрединовым З.Г, с – центр кристалла, г – край кристалла, Bi-k – биотит на контакте с гранатом.

Nº 2

Таблица 3

	и отношение (W/R) флюид/порода (вес. %) в моделях													
Ofneseu	Природный	Минералы												
ооразец	(П) – Модель (М)	Gr	Bi	Pl	Kfs	Sill	Qv	Ilm 1,0 1,5 0	W/R					
251-A	П	20	12,3	17,5	33,7	5,06	10,4	1,0						
	М	20,7	11	15	39,7	3,7	8	1,5	0,05					
441-г	П	5,2	9,8	-	0,02	10,41	74,53	0						
	М	7,3	9	-	1	9,4	73	0,2	0,09					
433-1	П	8,1	13,02	34,8	2,1	_	41,9	_						
	М	9,1	11,6	32,5	5,1	_	40	0,6	0,05					

Сопоставление (вес. %) количеств минералов в природных образцах (П) и моделях (М) и отношение (W/R) флюид/порода (вес. %) в моделях

42

Таблица 4

Сопоставление минеральных парагенезисов, параметров состава минералов в природных образцах (П) и моделях (М), оценки Р (бар), Т °C, fo,, Pco,, PH₂O

No offer	251	I-A	44	1-Г	A-433-1			
nº oop.	П	М	П	М	П	М		
X_{Fe}^{Grt}	0,63-0,65	0,64	0,78	0,774	0,79	0,784		
X_{Ca}^{Grt}	0,026	0,03	0,01	0,015	0,04	0,068		
X^{Bt}_{Fe}	0,34	0,34	0,49	0,501	0,48	0,49		
$X^{Pl}_{{\scriptscriptstyle An}}$	0,25	0,26	_	_	0,31	0,32		
Ті в Bt, ф.е.	0,24	0,20	0,17	0,16	0,24	0,17		
Mn в Grt, ф.е.	0,08-0,1	0,10	0,12	0,08	0,05	0,03		
Al ³⁺ в Вt, ф.е.	1,46	1,71	1,61	1,73	1,57	1,41		
Q _{Bt}		0,49		0,37		0,41		
Qv	+	+	+	+	+	+		
Kfs	+	+	+	+	+	+		
Sill	+	+	+	+	—	+		
Ilm	+	+	_	Сл.	—	+		
T °C		695		748		717		
Р, бар		5890		5600		6050		
fo2		-17		-16,4		-16,8		
Pco ₂		4700		1800		4380		
PH ₂ O		1100		3560		1580		

Примечание: + означает присутствие минерала; Сл. – след; прочерк – отсутствие минерала; $Q_{Bt} = z_{Mg}^{M2} - z_{Mg}^{M1}$ – параметр упорядочения биотитов по [19]; X_{Fe}^{Grt} , X_{Fe}^{Bt} – железистость (Fe/Fe+Mg) граната и биотита; X_{Ca}^{Grt} – кальциевость (Ca/Ca+Fe+Mg) граната; X_{An}^{Pl} – основность (Ca/Ca+Na) плагиоклаза.

Nº 2

режиму с показаниями известных геотермобарометров и фугометров.

Работа поддержана Интеграционным проектом СО и ДВО РАН № 12 (12-I-СУ-08-014).

Ключевые слова: термодинамическое моделирование, распознавание образов, метаморфические породы, парагенезис, минералообразование.

ЛИТЕРАТУРА

1. Авченко О.В. Минеральные равновесия в метаморфических породах и проблемы геобаротермометрии. – М. : Наука, 1990. – 182 с.

2. Авченко О.В., Чудненко К.В., Александров И.А. Основы физико-химического моделирования минеральных систем. – М. : Наука, 2009. – 229 с.

3. Авченко О.В., Чудненко К.В., Александров И.А., Худоложкин В.О. Адаптация программного комплекса «СЕЛЕКТОР-С» к решению проблем петрогенезиса метаморфических пород // Геохимия. – 2011. – Т. 49 – № 2. – С. 149-164.

4. Авченко О.В, Чудненко К.В., Худоложкин В.О., Александров И.А. Окислительный потенциал и состав метаморфогенного флюида как решение обратной задачи выпуклого программирования // Геохимия. – 2007. – № 5. – С. 547-558.

5. Бусленко Н.П. Моделирование сложных систем. – М. : Наука, 1978. – 400 с.

6. Дуда Р., Харт П. Распознавание образов и анализ сцен. – М. : Мир, 1978. –510 с.

7. Перчук Л.Л. Магматизм, метаморфизм и геодинамика. – М. : «Наука», 1993. – 190 с.

8. Чудненко К.В. Термодинамическое моделирование в геохимии: теория, алгоритмы, программное обеспечение, приложения. – Новосибирск : Изд-во «Гео», 2010. – 287 с.

9. Ту Дж., Гонсалес Р. Принципы распознавания образов. – М. : Мир, 1978. – 410 с.

10. Connolly J.A.D., Petrini K. An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions // Journal of Metamorphic Geology. – 2002. – V. 20. – P. 697-708.

11. Connolly J.A.D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation // EPSL. – 2005. – V. 236. – P. 524-541.

12. Dachs E. PET: Petrological elementary tools for mathematics // Computers & Geosciences. $-1998. - V. 24. - N_{2} 3. - P. 219-235.$

13. De Capitani C., Petrakakis K. The computation of equilibrium assemblage diagrams with Theriak/Domino software // American Mineralogist. – 2010. – V. 95. – P. 1006-1016.

14. Diener J.F.A., Powell R., White R.W., Holland T.J.B. A new thermodynamic model for clino- and orthoamphiboles in the system Na_2O -CaO-FeO-MgO-Al $_2O_3$ -SiO $_2$ -H $_2O$ -O // Journal of Metamorphic Geology. – 2007. – V. 25. – P. 631-656.

15. Eriksson G., Hack K. ChemSage – A computer program for the calculation of complex chemical equilibria// Metallurg. Trans. – 1990. – V. 21B. – P. 1013-1023.

16. Greenberg J.P., Weare J.H., Harvie C.E. An equilibrium computation algorithm for complex highly nonideal systems. Application to silicate phase equilibria // High Temperature Science. – 1985. – V. 20. – P. 141-162. 17. Herrmann W., Berry R.F. MINSQ – a least squares spreadsheet method for calculation mineral proportion from whole rock major element analyses // Geochemistry: Exploration, Environment, Analysis. – 2002. – V. 2. – P. 361-368.

18. Powell R., Holland T. Course Notes for «THER-MOCALC Workshop 2001: Calculating metamorphic Phase Equilibria» (on CD-ROM), 2001 (http://www.metamorph.geo.uni-mainz.de/thermocalc/).

19. Tajcmanova L., Connolly J.A.D., Cesare B. A thermodynamic model for titanium and ferric iron solution in biotite // Journal of Metamorphic Geology. -2009. -V. 27. - P. 153-165.

20. Takeno N. FLASK-SG: A program to compute chemical equilibria in metamorphic petrology // Computers & Geosciences. – 2001. – V. 27. – P. 1179-1188.