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Systematic snow disposal from street cleaning operations may create large anthropogenic snow/ice bodies. Such
man-made cryospheric objects may be considered as complex geophysical interfaces between the atmosphere,
landscape, soils and hydrosphere. Urban snow patches not only produce large amounts of meltwater (and
therefore a risk of flooding), but also serve as multiphase chemical reactors due to highly polluted mixture
of snow/ice with various materials and water inclusions. However, the exact roles of snow patches in the
environment and the factors driving their temporal evolution remain unclear. They are nevertheless of major

Keywords: . . .. R . . .

Snow patch importance for informed decision making and sustainable disposal operations. Here we present the results of a
Snow disposal 4-year monitoring program concerning two artificial snow patches near the town of Yuzhno-Sakhalinsk
Pollution (Russia) and the results of numerical modeling inferring the main corresponding processes, i.e. melting and
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water discharges. The temperature-based index method proved adequate to assess the evolution of the two
snow patches. Constant ablation factors of about 0.45-0.58 and 0.27-0.31 cm w.e. d~' °C™ !, respectively, were
found to be appropriate for a first order approximation of snow patch melt dynamics. However, twice lower
melt rates were found for one of the two closely located snow patches. This suggests that other factors, such
as debris content, likely play a role. This difference in melting can be accounted for by modulating the ablation
factor according to debris properties. In terms of peak daily water discharge, snow patch melting produces
about 5-15 cm w.e. per day, comparable to rain rates during regional typhoons. This study represents a starting
point that should be followed by a more detailed monitoring program and the application of a more complex
numerical model of snow disposal sites, to allow optimization of their maintenance. For example, marginal
melting or the combined influence of debris and soils on surface runoff should be further investigated. Moreover,
better constrained and formulated chemical processes will allow a more reliable estimate of the local environ-

mental impact of regular snow disposal.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Storage of snow removed from urban areas at particular locations
may lead to environmental disasters (Gensiorovsky et al., 2013; Lobkina
and Gensiorovsky, 2012). In heavy snowfall regions, like Sakhalin
Island, Russia, more than a million cubic meters of snow is annually
transported from city streets (e.g. Gensiorovsky, 2010) to deposit
sites. This can have a significant impact on the environment. In particu-
lar, the following mechanisms have been identified (Gensiorovsky et al.,
2013): i) a large anthropogenic snow-ice body can survive the ablation
season and lead to the discharge of polluted meltwater localized in
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space and time; ii) repetitive water discharge has bio-geo-chemical im-
pacts as it cumulatively increases concentration of pollutants in soils,
killing flora and leaking further into the hydrosphere with potentially
severe ecological effects on water bodies (Goto-Azuma, 1998; Tsiouris
et al., 1985); iii) large amounts of meltwater can lead to flooding, the
formation of swamps and gradual degradation of the surrounding eco-
system and infrastructure (e.g. erosion of roads), and iv) permafrost
may be formed in areas where it does not occur naturally (Lobkina
and Gensiorovsky, 2012). From this perspective, monitoring and envi-
ronmental assessments of such artificial snow patches are essential for
sustainable management of a territory, urban planning and associated
decision and policy making. Such monitoring requires not only observa-
tions at the snow patch, but also in the urban area itself with a focus on
snow accumulation and the amounts and chemical composition of the
snow removed from the streets. This knowledge is crucial for
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optimization of disposal operations and the assignment of snow dispos-
al sites (e.g. Campbell and Langevin, 1995a,1995b).

Naturally formed snow patches are known to produce complex
feedback to climate and have been relatively well studied (Fujita et al.,
2010). However, artificially produced snow patches are rarely investi-
gated, but present a challenging environmental problem, for example,
in the town of Yuzhno-Sakhalinsk, with an area of 164.7 km? (Sakhalin,
Russia). In this town, all snow is stored each year in 2 sites that have
been monitored since winter 2010/2011 through several campaigns.
This has produced records providing valuable material for the analysis
presented herein.

Russia presently lacks special regulations to control the negative ef-
fects of snow disposal on the environment (Lobkina and Gensiorovsky,
2012). Some northern countries (e.g. Canada) have such regulations,
even if mitigation measures are still lacking. This study therefore deals
with an important and timely question. Furthermore, it is known that
in summer, snow storage may be used to satisfy cooling demands for
various facilities and processes, as described for example by Skogsberg
and Nordell (2001). This potential for harvesting the cooling energy of
meltwater provides additional motivation for investigating the issue of
snow storage and associated pollution (Feiccabrino et al.,, 2008).

In this study, we attempt to construct a simple unifying framework
to make it possible to use available records while overcoming the lack
of certain measurements. More particularly, we want to evaluate
ablation and the environmental impact of the artificial snow patches
near Yuzhno-Sakhalinsk to help those in charge of making decisions
concerning snow disposal strategy. To achieve these objectives, we
will first present and combine all available relevant knowledge,
then describe the modeling approach for melting, estimate unknown
variables and associated uncertainties, reproduce the observed
evolution of the snow deposit in time and finally attempt to estimate
the amount of meltwater and pollutants discharged into the soil and
contaminating neighboring ecosystems. The latter is important when
planning snow deposits (Reinosdotter and Viklander, 2005), in particu-
lar, for the design of snowmelt drainage and water treatment systems,
the necessity of which has been pointed out by Lobkina and
Gensiorovsky (2012).

2. Study sites and available observations
2.1. Urban snow cleaning

About 3-5 x 10° m> of snow is annually removed from Yuzhno-
Sakhalinsk streets over the winter season (between November and
March) (Gensiorovsky, 2010; Gensiorovsky et al., 2013) and a portion
of this snow is hauled by trucks to two disposal sites. Snow from the
northern sector of the town is transported to snow patch #1 (mainly
from a territory neighboring its thermal power station, Ukrainskaya
street and an area of a wholesale trading base); while snow from
the central and southern sectors is hauled to snow patch #2. The
usual truck load volume is about 10-12 m? (sometimes 7 or 20 m?)
depending on the type of a vehicle. Accordingly, the annual average
number of truckloads of snow is in the order of a few 10°, which
is comparable to snow disposal operations of such large cities
as Montreal (Campbell and Langevin, 1995a). This highlights the
challenging nature of the work and the amount of resources needed
for the relatively small town of Yuzhno-Sakhalinsk (with a population
of about 182,000).

Episodic evaluations of snow accumulation and removal within the
urban area of Yuzhno-Sakhalinsk have been performed by Gensiorovsky
(2010), Lobkina and Gensiorovsky (2012) and other studies have also
looked at the snow chemistry (Gensiorovsky et al., 2013; Lobkina and
Gensiorovsky, 2012). Usually the undisturbed snowpack in the urban
area completely melts in April, as was the case in 2011 (Lobkina and
Gensiorovsky, 2012).
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Fig. 1. a) Location of the study site (the color bar indicates the elevation in km) and b) a plan
view of the town of Yuzhno-Sakhalinsk (from Google Earth) showing the exact locations of
the two snow patches and the weather station. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

2.2. Snow disposal sites

The snow disposal sites have been monitored on a mostly irregular
time basis by the Sakhalin Department of Far East Geological Institute
since winter season 2010/2011 (Gensiorovsky et al., 2013; Lobkina
and Gensiorovsky, 2012). The sites are located near Yuzhno-
Sakhalinsk, in the southern part of Sakhalin Island (Fig. 1). Both sites
are surrounded by plains without any marked topographic shadow
(for solar radiation or wind). Photographs of these sites are provided
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site #1

Fig. 2. Photographs of snow storage site #1 with the corresponding time line. The numbers indicate the months of the year (photo credits: V.A. Lobkina, Yu. V. Gensiorovsky). Note that the

presence of snow or ice beneath the surface was verified in situ for each object.

in Figs. 2 and 3, showing temporal complexity and diversity of their sur-
face states between 2011 and 2014. The main properties of the snow
patches, including area, average height, volume and surface density,
are shown in Fig. 4 for 2010/11-2013/14. The water equivalent of the
deposited snow was not measured directly, but is important to estimate
the amount of water discharged during the ablation season and the
dilution of pollutants.

Under the climatic (monsoon) and topographic conditions of this
part of Sakhalin, perennial snow patches of natural origin may exist
mainly due to high accumulation from snow avalanche deposits
(Gensiorovsky and Kazakov, 2006; Suchkov, 2012). The latter are
known to be an important factor in river discharge at Sakhalin
(Gensiorovsky et al., 2006).

The dimensions of snow patch #1 are comparable to those of a natural
snow patch already studied in Japan (Fujita et al.,, 2010). However, the
surface snow density at the time of deposition at both Yuzhno-

Sakhalinsk snow patches (usually more than 500 kg m~3) is significantly
higher due to the artificial nature of the accumulation process (see Fig. 4).

Note that the area and volume of the snow patches (Fig. 4) change
with time due to several processes, including artificial deposition,
natural densification and snowmelt, as well as the redistribution of
deposited snow by tractors during the accumulation period. Such tech-
nical post-processing is known to increase the temperature of snow to-
wards the melting point (J.M. Glénat, personal communication, 2013)
and induce granulation (see Fig. 3 for February 2011) and densification
of the snowpack. Furthermore, snow is hauled to the sites more fre-
quently after snowfalls (during such periods densification may be
slower). Even without any recent snowfalls, snow input is continuous
throughout the winter season due to ongoing street cleaning.

Ever since a number of vehicles delivering or flattening snow de-
posits became stuck in snow patch #2 (February 2011), large heights
(i.e. exceeding 20 m) have been avoided. Moreover, reduced height
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Fig. 3. Photographs of snow storage site #2 with the corresponding time line (photo credits: V.A. Lobkina, Yu. V. Gensiorovsky; black and white illustrations have been reproduced from
Lobkina and Gensiorovsky (2012)). The photographs taken in November 2011 and May 2013 show the site conditions after melting and degraded plants nearby, respectively. The
photograph taken in January 2012 shows the empty site before the start of main disposal operations.

and the resulting lower total water equivalent per unit area lead to
faster melting, as the corresponding increase in the surface area of the
snow/ice bodies enhances the energy exchange with the atmosphere.
During the ablation season, meltwater produces swamps, ponds and
active streams around both snow storage sites. Large amounts of
garbage (i.e. plastic, tires, wood, bottles and organic materials) and
solid particle deposits are also observed. This makes field observations
physically challenging due to a very unpleasant smell. Debris cover is
formed by the melting-out of fine-grained lithogenic, organic and
waste materials. The thickness of the debris has a high spatial variability
that is difficult to quantify, especially towards the end of each melting
season. Debris cover (mainly sand and clay loam) first observed in

May and can subsequently increase to about 20 cm (or more in some
places) by July. Grass may even start to grow on the debris cover around
June (Figs. 2 and 3). The variation of surface albedo due to debris and the
thermal conductivity, specific heat and density of this surface layer
remain unknown.

2.2.1. Snow patch #1

Snow patch #1 is located within the northern area of the town near
Prospect Mira street (47.005°N, 142.738°E, 41 masl). It is a flat area,
surrounded by several industrial warehouses, which may be exposed
to flooding during intensive periods of snowmelt (drainage ditch has
recently been dug for this reason). In contrast to snow patch #2, this
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Observations at snowpatches No.1 and 2
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Fig. 4. Properties of snow patches #1 (blue circles) and #2 (red circles). In order to in-
crease the number of reference points, 4 missing density values (for 5/2012, 6-7/2013
and 5/2014) were assumed to be equal to 900 kg m~> based on previous measurements.
(For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

site has a bounded area, limiting the maximum spatial extent of snow
disposal to less than 4.0 ha.

In addition to the planned snow deposits, it appears to us that a lot of
solid waste is disposed illegally at the site in winter. During melting pe-
riods cones of granular construction materials (up to 2-2.5 m high)
were noticed at some places. This does not appear to be the case at
snow patch #2, which has well organized official check-in gates for all
incoming trucks.

During the last 4 ablation seasons (2011-2014), snow patch #1 did
not melt completely leaving some snow for the following season. The
spatial variability of height changes due to melting/settling may be
significant (about 8 m), indicating relatively heterogeneous melting/
settling rates. Short-term snow temperature measurements (end of
July 2014) at a depth of 0.5 m showed a constant temperature of
—0.4 °Cover 3 days.

At the end of September 2014 the owner of the land under snow
patch #1 changed. This resulted in snow patch breakage, flattening
and coverage with loam. In the beginning of October 2014, the site
was still surrounded by a swamp. Therefore, snow will have to be
deposited elsewhere over the next winter season.

2.2.2. Snow patch #2

Snow patch #2 (Fig. 3) is located on the south-west side of Yuzhno-
Sakhalinsk near Zheleznodorojnaya street (46.919°N, 142.720°E,
16 masl). This land was previously used for farming and a drainage

system still in place allows meltwater to flow into the nearby Susuya
River. This river however flows into Salmon Bay (Bukhta Lososey) and
can produce floods (Fig. 1).

The snow thickness during the melting period varies less spatially
than at snow patch #1 (about 5 m). Its surface is therefore flatter and
more homogeneous (Fig. 3), making somewhat simpler to model this
snow patch than snow patch #1.

According to Lobkina and Gensiorovsky (2012), this snow patch
completely melted by the beginning of September 2011. The snow
patch melted in July in 2012 and in August in 2013. Only in 2014 did
snow patch #2 not melt completely leaving a partial deposit with an av-
erage thickness of 2 m (according to a survey on 9 October 2014). Here-
after we consider these time marks as references for model calibration.

2.3. Underlying soils

Soil properties at snow storage sites determine the amount of
snowmelt (and pollutants) contributing to infiltration and surface
runoff. However, due to difficult access, these properties (such as
hydraulic conductivity, which determines infiltration capacity) are not
accurately known. Based on a few pits, disposal site #1 seems to have
a subsurface horizon of clay, separating the snow patch from the ground
water.

Disposal site #2 has deposits resulting from snowmelt (gravel
and sand about 10 cm thick) on top, covering a thin layer of degraded
soil-vegetation and further down some clay mixed with gravel or
gravel-sand with clay loam (10-30 cm). Groundwater level is
only 0-15 cm below the surface. This indicates that the meltwater is
in direct contact with the aquifer and that the soils are close to a saturated
state.

Permafrost does not naturally develop under the climatic conditions
of this part of Sakhalin Island (Gensiorovsky et al., 2013). If soil freezes
before the deposition of snow, newly formed permafrost may block in-
filtration of meltwater into soil and therefore increase surface runoff
(Feiccabrino et al., 2008). It is not clear if this situation takes place at
the site of snow patch #2, where a 1 m deep swamp was observed
around the deposits (May 2014). At snow disposal site #1, the freezing
of upper soil layers is more likely since this snow patch survived four
consequent ablation seasons, possibly insulating against the penetration
of summer heat while storing cold beneath the snow. This however
remains to be confirmed because meltwater generally provides latent
heat when refreezing within deeper cold layers.

3. Methods (model and input data)

Below we will describe our modeling approach for estimating tempo-
ral melting of the snow patches on the basis of available observations. To
evaluate melting, we employ the positive degree day (PDD) temperature
model, a common and popular approach for glaciologic mass-balance
modeling (e.g. Maisincho et al., 2014; Thibert et al., 2013).

We chose the temperature-based melt-index method for calibration
against available data because the alternative energy balance model
(e.g. Fujita et al., 2010) requires measurements of the energy fluxes at
the surface layer and assumptions concerning a larger number of
unknown parameters. Given that we are dealing with an optimization
problem, the energy balance model would only increase the number
of degrees-of-freedom in the system and therefore a number of possible
solutions.

3.1. Mass-balance model
Snow density change with depth may be estimated using the follow-

ing relationship (Paterson, 1994):

p(2) = p; —(p; — po)e” <, 1)
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where p; is the density of ice (917 kg m~3), ps is the surface density,
C= % and z; is a depth of firn-to-ice transition.

Consequently, the total mass of a snow-ice body, M., may be
estimated as

Ma = [ [ plertzd. )

where () is an area of a snow patch and h is the thickness of the snow.
Note that the inner integral

/%@a:mhﬂm—gmmmﬂ—m 3)
—h

gives a total mass per m? and if divided by 10 kg (i.e. the mass of a
1 cm w.e. column per m?) corresponds to a total water equivalent of a

Ap (in cm w.e.), expressed as
1
PDD=3 ", (@10, (4)

where 0 is a mean daily air temperature and
A, =PDD x @ )

where « is a PDD factor, which lies in a range [0.27-1.16] cm w.e.
d~!°C~! for snow and ice according to Hock (2003). Representative
values of the day-degree factor are 0.48 and 0.68 cm w.e.d~ ! °C~! for
snow and ice respectively. Correlation between ablation and the
positive degree-day sum is interpreted in terms of turbulent heat fluxes
or long-wave atmospheric radiation that correlates well with air
temperature (see Fujita et al. (2010) and references within for more
details). Furthermore, solar radiation is known to correlate closely
with temperature (Sicart et al., 2008).

The overall mass balance equation of a snow patch may be expressed

snow column (hereafter TWE). as:
The PDD model is based on a linear relationship between the sum
of positive daily temperatures, PDD, and the amount of melting, =~ TWE(t) = Ax(t) + Sp(t) —A, (t) —Ag(t), (6)
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Fig. 5. Input data: meteorological time series (actual and multi-annual monthly mean values for Yuzhno-Sakhalinsk) and artificial accumulation of snow (i.e. TWE for the end of accumu-

lation season; see text for details).
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where t is the elapsed time in days, A, is the artificial accumulation
due to snow deposition by trucks, Sp the solid precipitation and Ag
the melting due to geothermal flux, which is equivalent to about
1 cm we.e. per year and therefore negligible.

Solving Eq. (6) for daily time steps gives us sufficient insight into the
temporal evolution of the snow patches considered in this study. For air
temperature and solid precipitation (from January 2011 to September
2014), we use the mean daily values measured at the official meteoro-
logical observatory of Yuzhno-Sakhalinsk (46.950°N, 142.710°E,
22 masl), located 4 km from snow patch #2 and 6 km from snow
patch #1 (Figs. 5, 6). Artificial snow accumulation, A4 (or snow disposal),
is also indicated in Fig. 5 (evaluation and uncertainty of this value is
discussed in details below). Note that the artificial accumulation is
simply added as a ‘Dirac’ at the end of each accumulation season before
the beginning of ablation.

We also include multiannual monthly means for the air tempera-
ture, the total amount of solar radiation and the wind speed from
the same weather station (Fig. 5). Periodic extrapolation of annual air
temperature time-series makes it possible to evaluate future changes
and the evolution of the snow patches. Note that the winter season
contribution of solid precipitation, Sp(t), is negligible compared to
artificial accumulation (Fig. 6).

The proposed 1D model ignores melting due to solar radiation,
refreezing of meltwater within the snow patch and melting at snow
patch margins. Note also that the accuracy of any temperature-based
melt-index based study may be subject to year-by-year changes of the
degree-day factor (Fujita et al., 2010). In order to reveal such temporal
fluctuations and thereby improve the accuracy of our understanding
and predictions, long-term observations are needed (but were not
available in this study). In our case, however, it will be shown that
fluctuations are most likely related to debris cover changes.

3.2. Influence of debris cover

3.2.1. General features

The debris cover is made up of pollution and large amounts of litter
and suspended solids (e.g. sand and dust). Snow patch albedo decreases
rapidly with time as the surface debris thickness increases.

It is known that albedo of dirty snow along roads may be as low
as 0.1 (Skogsberg, 2005), thus increasing melting due to increased ab-
sorption of solar radiation. Similarly, melting first increases on debris
covered glaciers (Bozhinskiy et al., 1986). However, when the debris
layer exceeds a so called ‘critical thickness’ (h.) of a few cm, the opposite
effect may occur, i.e. decreased or even almost no ablation due to insu-
lation (Kayastha et al., 2000; Konovalov, 2000). For example, 10 cm and
40 cm of debris may reduce ablation by 35-66% and 59-85%, respectively
(see areview by Skogsberg, 2005). This also depends on the thermal con-
ductivity of the debris material. In Sweden, this property was employed
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Fig. 6. Cumulative amounts of solid and liquid precipitation for 2011-2014.

in order to artificially insulate (with wood chips) a snow patch used for
cooling purposes (Skogsberg, 2005).

In our case, the beginning of the ablation season may be intensified
by the formation of a thin layer of debris until the thickness exceeds
he, after which melting decreases. This can lead to higher ablation
efficiency early in the season, which can however be counterbalanced
by cooler temperatures than those observed later in the season.

In order to test such assumptions, we could employ an approach
quantifying debris influence through a modified PDD factor (Juen
et al,, 2014; Lambrecht et al., 2011; Mayer et al., 2011). For this, instead
of using the previously introduced constant ¢, we define a PDD factor as
a function of debris thickness, i.e. « = f (h(t)), where h(t) is the thick-
ness of the debris cover. The latter is known to increase from 0 cm in
March to about 20 cm in July at both sites.

3.2.2. Debris thickness and PDD

As stated above, the complex influence of debris cover (Reznichenko
et al., 2010) may be taken into account by adjusting the PDD factor as a
function of h (Kayastha et al., 2000; Lambrecht et al., 2011). To the best
of our knowledge, even for many detailed case studies on debris-
covered glaciers, the precise shape of this curve is never obvious. In
particular, the presumed increase of « at low h (i.e. < h.) up to some
maximum value a, is rarely clearly demonstrated by precise measure-
ments (Juen et al., 2014; Lambrecht etal.,, 2011; Mayer et al., 2011), with
rare exceptions such as the debris rearrangement experiments by
Kayastha et al. (2000). Therefore, most authors had no other choice
than to assume some empirical or manually derived function (Juen
et al., 2014; Konovalov, 2000; Lambrecht et al., 2011; Mayer et al,,
2011).

According to Kayastha et al. (2000), the degree-day factor can be
predicted from the thermal conductivity of a debris layer, which is,
however, not available in this study. As an alternative, we could adopt
the empirical shape proposed by Konovalov (2000), who, to the best
of our knowledge, presents the only relative ablation rates available as
a function of debris thickness over snow. Unfortunately, his work does
not indicate any absolute values for the melting factor.

If we attempt to parameterize the previously published dependencies
between a and h as a continuous function, the following formulation,
partly adapted from Juen et al. (2014), may be proposed:

_ fah®* +bh+c if h<h,
ah) = { ph® if heh. @
where
g = Heo—ay)
h?
b= 4(a0_am)
he (8)

c =0y,

_%

Looking closely at previous studies, it may be concluded that usually
&> €[0.75,0.95], which corresponds to a 5-25% increase in ablation;
he € [1, 12] cm according to Reznichenko et al. (2010) and the decay
exponent s € [—0.6354, — 0.5354] according to data assimilated by
Juen et al. (2014) and Lambrecht et al. (2011). For example, with
o €[0.29, 0.67] cm w.e. d” ! °C™!, the presented parameter space
has an infinite number of possible solutions. The corresponding solution
domain is shown in Fig. 7. To be able to solve the problem, we have to
narrow down the possibilities of the parameter space. Therefore, as an
optimal set, initially we adopt g* = 0.85, hc = 5 cm, and s = —0.6354
(see Section 4.2 for sensitivity tests).

Detailed knowledge of the evolution of debris thickness of snow
patches with time is not available. Only episodic estimates can be
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Fig. 7. Solution domain for the relationship o = f(h, h, &g, oty, 5); black line shows the
solution for the following parameters: o = 0.48 cm w.e.d ' °C™ 1, g—; =0.85,h. = 5cm,
and s = —0.6354.

inferred from available time referenced photographs (Figs. 2 and 3),
which are provided in Fig. 8. In attempt to avoid the subjective bias of
such procedure, the thickness was estimated independently by three
of the co-authors as a blind test. The obtained results tend to show
that the thickness exceeds a small value relatively early in the season,
meaning that a possible increase of melting can only occur before this
time, which corresponds to the period of the lowest temperatures of
the warm season.

Temporal seasonal changes of debris thickness can be approximated
(in @ minimal Root Mean Square Error sense) as:

h(t) = 0.5 x (1 cerf [ﬂD * My )

o2

where u is the day of the year when the average thickness is reached
(end of April), and o is a slope (25). Assuming such a shape for every
year (and setting it to 0 cm for the beginning of each winter season
due to a new fallen snow cover of any surface features), we can evaluate
the possible effect of debris. The presented formulation is in line
with observations (Fig. 8), but is simplified because debris melt-out is
a nonsteady process. Incorporation of more sophisticated feedback
mechanisms with melting (e.g. Bozhinskiy et al., 1986) will require
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assumptions concerning the albedo and debris content within the body
of a snow patch.

3.3. Initial conditions and constraints

Some studies of snow patches presume constant snow density over
the full snowpack depth (Feiccabrino et al., 2008). This is a simplifica-
tion because density actually increases with depth due to overburden
pressure. In our case, the initial density profile is unknown but crucial
for predicting melting over time. To address uncertainty and narrow
down the possible range of TWE(p(z)), we could set minimal and
maximal values of the initial TWE. This could be done by fixing known
parameters (h, ps) and assuming unknown parameters (z;).

For example, we could derive the TWEpar2011 and density profiles
from two previously reported observations:

1) TWEnin: from the March 2011 estimates of volume of snow at the
site, V, area of the snow patch, (), and density of snow, p;, i.e.

_ Vxp,
A7 0x10 (10)
which yields 720 cm w.e.

2) TWE . or, alternatively, by plugging h = 9 m and p; = 800 kg m >

into integrated Eq. (1) and assuming some z,.

The relationship between TWE and z; is illustrated in Fig. 9, which
also indicates the upper limit of TWE (about 822 cm w.e.) at a very
high z, (— 0.5 m). For a natural snow-ice body such a high (i.e. shallow)
z. would be unrealistic, but can be reasonable in our case due to artificial
compaction of the snow patches.

On one hand, the obtained values seem to be contradictory (Fig. 10),
but on the other hand, they may be considered to be a range of uncer-
tainty, providing upper and lower limits for initial conditions (Fig. 5).
Note that this advantage is a rare case in glaciology, since usually it is
difficult to know the initial water equivalent of a given ice-body, for in-
stance a glacier.

In addition, from a perspective of in situ observations, the introduced
ambiguity highlights the importance of density profile measurements at
the snow patches for reducing propagation of uncertainty through the
system.

3.4. Pollution module

In an attempt to estimate the temporal evolution and amount of dis-
charge of pollutants into the neighboring environment with meltwater,
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Fig. 9. Sensitivity of TWE to z.
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Fig. 10. Example of uncertainty in the initial density profile (black color: z; —» — ~ m;
red: zz = —0.5 m; blue dot indicates the measured p;). Corresponding difference
ATWE = 102 cm w.e. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

we use the detailed measurements of snow chemistry at snow deposit
#2 by Lobkina and Gensiorovsky (2012). Most of the chemical
compounds are known to be poorly soluble in ice (Brill, 1957; Gross,
1967) and are generally located at grain boundaries in snow in highly
concentrated water films and liquid inclusions (Craigin et al., 1993;
Dominé and Thibert, 1995; Goto-Azuma, 1998; Wolff et al., 1989).
Lobkina and Gensiorovsky (2012) measured concentrations of various
molecules dissolved in the melted snow samples taken before melting
season (1 March 2011), which we provide in Table 1. Note that accord-
ing to Feiccabrino et al. (2008) “such samples are ... very difficult to
take, and do not appear to be available from any study”. Due to a lack
of data, Feiccabrino et al. (2008) and Lundberg et al. (2014) used
snow chemistry records from other studies on snow near roads to
evaluate total pollutant load in particular snow deposits at different
locations. This demonstrates the unique nature of the available records.

Table 1

Chemical composition (i.e. concentrations in mg 1-!) of snow from different sampling
sites: in the urban area, at the moment of disposal at snow patch #2, and at the edge of
snow patch #2 (from Lobkina and Gensiorovsky, 2012). ‘-’ indicates that the molecule
was not found. (Cd, Cu and Pb had concentrations less than 0.01 mg 1= '; P and N were
not found). Samples that exceed the maximum permissible concentration for fishery
waters, f3,; are indicated in bold.

Molecule Urban, 3, Disposal, B4 Edge, Bei Max. perm. Bxi = Byi
conc., Bpi

Cations

Lit - - 0.003 0.08

Na* 0.56 1.17 91.7 120

NHZ 0.27 048 - 04 Yes

K* 0.53 0.81 1.7 50

ca*t 0.13 0.83 2338 180

Mg2* 0.05 0.19 1.1 40

Anions

F~ - 0.02 0.14 0.75

Cl™ 0.83 2.27 143 300

NO3 0.02 0.51 0.3 9.1

Br— 0.22 1.78 8.63 100

Elements

Al 0.01 <0.01 049 0.04 Yes

Ba 0.01 <0.01 0.04 0.74

Ca 0.27 1.24 20.07 180

Fe 0.01 0.02 0.82 0.1 Yes

K 0.25 0.09 1.93 50

Mg 0.17 0.11 1.51 40

Mn <0.01 0.01 0.05 0.01 Yes

Na 1.08 0.55 101.0 120

Sr <0.01 <0.01 0.07 0.4

Zn 0.01 0.01 0.01 0.01 Yes
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Unfortunately, none of the analyses made for the Sakhalin snow
patches considered insoluble suspended solids (e.g. road anti-skid
material) in the chemical analysis of snow samples (Lobkina and
Gensiorovsky, 2012). Such measurements may be of interest in the
follow-up campaigns because particulate matter may carry the most
significant amount of bonded pollutants (Feiccabrino et al., 2008). It
also means that our estimates may be considered as a lower limit,
which is likely to underestimate the total amount of pollutants.
Measured amounts of total dissolved compounds in melted snow
samples from the edges of sites #1 and #2 were 37 and 15 mg 1™,
respectively (July 2014). Furthermore, it was noted visually that melt-
water from snow patch #1 seemed to be more turbid. This suggests
that our evaluation based on measurements at site #2 may underesti-
mate the amount of pollution from snow patch #1 by at least a factor
of 2. Recently (May 2013), the soil chemistry at the site of snow patch
#2 was documented by Gensiorovsky et al. (2013), based on samples
of the soil near and under the snow patch and solid debris on the snow.

The measured pH values of meltwater discharged from snow
patches #1 and #2 were mildly acidic (6.5 and 5.7, respectively; July
2013). The pH values of snow samples taken from 0.2 to 0.4 m under
the snow surface were 5 and 4, respectively (July 2014). According to
some reports in the literature (e.g. Feiccabrino et al., 2008), urban
snow is usually more alkaline than natural snow due to suspended
solids, with reported pH values for snow near roads between approxi-
mately 7.3 + 0.38 and 8.3 4 0.36. The corresponding concentration of
suspended solids in snow melt varied between 4471 4+ 3144 and
7889 + 6744 mg 1~ (Feiccabrino et al., 2008).

The simplest way to evaluate the transport of elements out of the
snow patch is to assume that the amount of pollutants removed directly
is proportional to a unit of water equivalent, i.e.

Pi(t) = Ap(t) x Bg; x 10 (11)

where P;(t) is the outgoing mass of a particular element i (mg), and B; is
the concentration of the element i at the time of snow deposition
(mg171); see Table 1.

Similarly, the total pollutant load (kg) of the snow patch is

TPL; = TWE x Q x B4 x 107°. (12)

This is of course a highly simplified approach to address the problem,
because snow chemistry during melting is a complex process (Tsiouris
et al., 1985), involving a variety of mechanisms including different re-
sponses of elements to water (Brimbelcombe et al., 1987; Cadle et al.,
1984; Goto-Azuma, 1998) and photochemistry (Dominé et al., 2008).
The preferential retention and release of components (elution process)
from melting snow is therefore not taken into account. Nevertheless, as
a first order approximation, we assume here that whatever the delay in
the transport of a given element, the total amount contained in the
snow patch is transferred into the soil because melting is complete
(or almost complete) by the end of an ablation (Feiccabrino et al.,
2008). Clearly this logic may not work for snow patch #1, which
survives the ablation season. Further studies may determine whether
the remaining snowpack at the end of the season can be considered to
be a temporary ‘accumulator’ of pollutants.

4. Results and discussion
4.1. Ablation with constant «

For the period of observations, the annual average positive degree-day
sum, PDD, was around 2450 £ 67 °C days. Assuming the degree-day
factor = 0.48 cm w.e.d~! °C~! (a value typical for snow (Hock, 2003)),
the seasonal snow pack disappears around April (Fig. 11) as is usually
observed (Lobkina and Gensiorovsky, 2012).

For the snow patches, we will first describe the results of numerical
experiments with constant PDD factors, derived through calibration,
and then compare them to tests made with « defined as a function of
h. The two types of simulations will be plotted on the same graphs for
easier comparison. The exact values of the main calibrated model
parameters are summarized in Table 2.

4.1.1. Snow patch #2

The optimal factor values for snow patch #2 were found using a
minimization procedure. The corresponding cost function was defined
as the square root of the sum of the squared time delays from the
three reference intervals of complete melting (as indicated earlier
above). Indeed, the same approach could be used to fit each individual
season, however we are more interested in deriving one value
explaining the whole period of observations. For snow patch scenario
1 (TWEmin), the corresponding iy - is 045 cm w.e. d~! °C~ ! and for
scenario 2 (TWEmax), Omay 2 15 0.58 cm w.e. d~ ' °C™ ! (equivalent to
peak melt rates in August of around 10-14 cm w.e. per day).

Such a range of degree-day factors is typical or slightly higher than
values usually reported for snow (Hock, 2003). Given that the snow
patch is composed of polluted matter and gets darker towards the
end of the melting season, the obtained high value makes sense. For
example, a much higher PDD factor (0.98 cm w.e. d~! °C™!) was
recently reported for dirty ice by Maisincho et al. (2014).

Melting versus time for snow patch #2 and the evolution of its mass
balance are shown in Fig. 11. As expected, initial TWE and PDD factor
play the most important roles in the behavior of the system, namely in
daily ablation intensity and dates of complete melting. In general, later
melt out is caused by a higher TWE (i.e. high depth and density) or a
lower value of PDD factor.

The most noticeable inconsistency between modeled and
observed mass-balance for all scenarios appears in May 2014, when
the observation-derived TWE is smaller than the predicted value
(Fig. 11). If our TWE estimate is not wrong (due to underestimated
height), this may mean that non-constant melt rates throughout
the season should be considered (see also the discussion for snow
patch #1 below). Another deviation from the observations is the
full melt out by September 2014. This is likely the consequence of
some other factors not considered in our approach. In particular, during
the accumulation season of 2014 snow patch #2 had the largest area
and volume for the period of observations and some self-regulation
mechanisms could possibly play a role in preserving the cold state
(i.e. the snow patch took a longer time to warm before melting in this
specific year).

Winter season accumulation and its variability have a negligible
effect on the mass-balance of the snow patch. This is not surprising
given that there is more than an order of magnitude difference between
annual solid precipitation (around 30 cm w.e.) and the artificial accu-
mulation of snow. Furthermore, we could not find any relationship
between the total amount of snow delivered to the snow patches and
corresponding winter precipitation in 2011-2014.

We also note that the official requirement of the local authorities to
close operation of snow patch #2 by the end of May (meaning that no
snow should remain at the site) would appear to be physically impossible.
This is illustrated in Fig. 12, which provides positive degree day sums for
the last 4 years until the end of May. The average cumulative sum of pos-
itive temperatures is about 278 + 54 °C days. For such climatic conditions,
if we assume the most intense melting (o = 1.16 cmw.e.d~' °C™") and
snow density of around 800 kg m ™3, the height of the snow patch should
be less than 4 m at the beginning of ablation season for complete melting
before the end of May. With more conservative and realistic assumptions
(=048 cmw.e. d~'°C~!, p = 600 kg m~3) the height should be less
than 2 m for complete melting. Flattening of the snow patch to such small
heights would mean a significant increase in its area and therefore
additional working hours.
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Fig. 11. Potential melting and cumulative mass-balance for 2011-2014. a) Seasonal urban snowpack, oz = 0.48 cmw.e.d~! °C! (intervals between the blue bars on the time axis indicate
April when urban snow usually disappears); snow patch #2: b) scenario 1 (TWE min), Qmin 2 = 0.45 cmw.e.d ™' °C™"; ¢) scenario 2 (TWE pax), @max 2 = 0.58 cmw.e.d ™" °C~! (intervals
between the blue bars on the time axis indicate the months when snow patch #2 melted completely; blue circles indicate the estimated TWE pin max Values from available observations;
here and hereafter, blue curves correspond to o = const, and red curves to a = f(h)). (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

4.1.2. Snow patch #1

If we apply the same PDD factors as described above (Qimin 2,max 2) 0
min and max TWE cases for snow patch #1, the snow patch completely
melts out in most ablation seasons around August (Fig. 13). This contra-
dicts observations confirming that the snow patch did not completely
melt over the last four ablation seasons. Reduction of the factor to
Omin 1 = 0.278 and Otmax 1 = 0.315 cm w.e. d~ ' °C™! prevents the
snow patch from melting during the four critical melting periods. In-
stead, with these values, it gains mass and survives until September
2014 (Fig. 13). This result is surprising and will be discussed in
detail below.

Table 2

Satisfying the no-melt condition over the four last ablation seasons
was a necessary but not sufficient condition for our model. In contrast
to the case of snow patch #2, our evaluation of TWE, ¢, at the beginning
of each ablation period includes non-melted snow/ice from the previ-
ous year and newly hauled snow of the current year (i.e. TWE¢qr =
Ayear — 1 + Apyear, OF the cumulative mass balance). Therefore, the
amount of left-over snow/ice from the preceding season (Ayeqr — 1) is
a major unknown for modeling snow patch #1. From this perspective,
as a second step in evaluating the skill of the model to estimate the be-
havior of snow patch #1 over the period 2012-2014, the predicted
Ayear — 1 should be removed from the TWEy.,,. For the fixed value of

Main parameters of the model. Values which are different for the two snow patches are shown in bold for clarity. By ‘consistency’, we mean our assessment of how well each scenario

agrees with the complex web of conditions discussed in the text.

Snow patch # #2 #1 Consistency
Scenario ap, cmw.e.d '°C'  hpgem  h,m L - s - ap,cmw.e.d”'°CT" hpgem  hem % s -
TWEmin i.ac = const 0.450 - - - - 0.278 - - - - Poor
il. a = f(t) 0.680 0.20 005 085 —0.6354 0.680 0.31 0.05 085 —0.6354 Medium
iii. a = f(t) 0.680 0.20 0.05 0.85 —0.6354 0.680 0.20 0.027 0.85 —0.6354  Good
TWE max i.ac=const 0.580 - - - - 0315 - - - - Poor
il. a = f(t) 0.900 0.20 005 085 —0.6354 0.900 0.38 0.05 085 —0.6354 Medium
iii. a = f(t) 0.900 0.20 0.05 0.85 —0.6354 0.900 0.20 0.027 0.85 —0.6354  Good
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Fig. 12. Increase of positive degree day sum with time before the end of May for four spring
seasons of 2011-2014.

a, such operation gives realistic results, which are close to the observed
values of TWEye,, at the beginning of the ablation season (Fig. 13). The

corresponding peak melt rates in August are about 6-7 cm w.e. per day.

A difference between predicted and observed data is seen around
summer 2013 and 2014 for both considered TWE scenarios (Fig. 13).
Two factors could be the cause of this difference: 1) non-constant
melt rates (i.e. higher in the beginning and lower towards the end of
the ablation season), and 2) uncertainty in the average height during
the ablation period. As already pointed out, snow patch #1 has a higher
variability of surface height towards the end of each melting season
than snow patch #2. For example, on 24 July 2014, the height varied
between 5 and 13 m. Therefore, it is likely that the ‘average height’ of
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the ablation period may be subjective, depending on the observer,
given that it is based on a visual estimation.

With our present knowledge, either explanation could be the cause
of the differences between predicted and observed data. More quantita-
tive observations will be needed to clarify this ambiguity.

4.1.3. Differences between snow patch #1 and #2

The ratio between melt rates at the first and second snow patches,
a4/, indicates 38-46% less ablation at snow patch #1. However,
there is no obvious explanation for such lower overall melt rates. Possi-
ble reasons include:

1) Lower ambient air temperature due to the proximity of mountains to
the east of snow patch #1 (up to 1 km high; Fig. 1). Given the profile
of the terrain, a major shadow effect is however unlikely. Therefore,
it is unlikely that the positive air temperature (the PDD sum) would
be nearly 50% lower than at snow patch #2.

A major insulating effect of debris cover, which as will be shown
below, seems to be the most important process controlling the
overall behavior of the considered systems.

At this stage, given that the first possible reason concerning lower
temperatures is unlikely, the inability of the model to reproduce the
behavior of both snow patches may indicate that using constant PDD
factors is wrong and that debris cover changes are likely the main
cause of the difference.
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curves to o = f(h). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.2. Debris-modulated ablation

Owning high uncertainty and a lack of observations (see
Section 3.2.2), the following may be considered only as a qualitative in-
vestigation of possible debris related effects until more measurements
become available over future seasons.

The key difference between results produced by constant and non-
constant PDD factor scenarios is the slightly skewed shape of the annual
potential melt to the left, towards the beginning of an ablation season
(Figs. 11 and 13). For particularly warm spring seasons (e.g. 2012),
when debris thickness is still sub-critical, this may correspond to inten-
sified melting with peaks reaching the same magnitude (Fig. 11) or
even exceeding (Fig. 13) peaks corresponding to those produced in
scenarios with constant PDD.

On the other hand, differences in mass balance temporal evolution
are relatively small (Figs. 11 and 13) and cannot be used alone to vali-
date the use of constant or non-constant PDD factor, given the limited
TWE records available to us.

If we run our simulations with h,,x for snow patch #1 higher by
11-18 cm, we obtain non-melting conditions for exactly the same ap
and other debris-related values as for snow patch #2 (Table 2). Never-
theless, this numerical experiment is unlikely to correspond to reality,
because it could not be confirmed by any observer that snow patch #1
had a nearly twice thicker debris cover than snow patch #2 (Fig. 7).
Therefore, another explanation should be looked for. For example,
with all parameters kept the same at both sites, a difference in h. may
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be responsible for a difference in the behavior of the two snow patches.
Non-melting conditions can be achieved by taking a lower h. = 2.7 cm
for snow patch #1 (instead of h. = 5 as for snow patch #2) (Table 2). It
is however unclear why this snow patch might have a lower critical
thickness. One possible reason could be related to the already
mentioned large amount of construction materials disposed of on this
site. The lower h. would therefore stem from the physical properties
of the waste (e.g. density, permeability, and heat conductivity).

This suggests that a debris modulated behavior of the snow patches,
especially of snow patch #1, is a more physically plausible explanation
than air temperature differences between the sites. To check the validity
of this possibility, better defined parameters of the equations of
Section 3.2.2 are necessary. This could be achieved in follow-up cam-
paigns. Furthermore, a more physical approach would be to consider
the surface energy balance and a model of thermal heat transfer through
the debris cover layer.

The calculated skewed annual potential melt is cascaded down
the calculation line to other model outputs, such as daily discharge
(Fig. 14) and surface runoff (Fig. 15).

4.3. Meltwater discharge

The total simulated amount of meltwater discharged from snow
patches #1 and #2 over the period of observations is shown in Fig. 14
and was around 1 x 10° and 2-3 x 10° m?, respectively. The overall
volume is equivalent to about 1200-1600 Olympic swimming pools
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Fig. 14. Cumulative melting, total amount of meltwater discharge and daily discharge for 2011-2014 at snow patch #2 (upper 6 subpanels) and snow patch #1 (lower 6 subpanels). The
left side panels are for the min TWE case; the right side panels are for the max TWE case; blue curves correspond to @ = const, and red curves to « = f(h). (For interpretation of the ref-

erences to color in this figure legend, the reader is referred to the web version of this article.)
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the reader is referred to the web version of this article.)

(a unit volume of 2500 m?), a considerable contribution to the local
urban hydrology.

Peak daily discharge is expected to occur around July-August (but can
occur earlier in the event of a warm spring), with up to 15-20 x 10> m*
per day from snow patch #2 and 2-4 x 10> m? per day from snow
patch #1 (Fig. 14). For the same corresponding catchment area as that
of the snow patches (for the beginning of melting season), typhoons
may bring similar amount of water in one day (e.g. around 10 x 10 m?
in August 2013 for the area of snow patch #2 or 3 x 10> m? for snow
patch #1). This further illustrates the hydrological significance of these ar-
tificial snow/ice bodies, which are capable of discharging such large
amounts every day for periods of weeks.

The discharge from snow patch #1 is more inter-annually homoge-
neous due to its relatively constant area. The discharge from snow
patch #2 varies between years due to a significant change of its total
area (Figs. 14 and 4).

Compared to the seasonal melting of natural snowpack (resulting
river discharges peaking in May-June) (Gensiorovsky et al., 2006), arti-
ficial snow patches exhibit delayed and longer melting, which is shifted
by about 3 months due to the low surface area-to-volume ratio of the
patches. This also corresponds to a longer duration and local intensity
of acid flush. The significance of this for local ecosystems remains
unclear, but it may suppress vegetation due to cold acidic water input.
Moreover, given that the most intense period of snow patch melting

(July-August) overlaps with the period of fish spawning, the chemical
influence of discharged acidic waters with pollutants may have negative
effects on fish as well (e.g. Goto-Azuma, 1998).

4.4. Infiltration and surface run-off

Note that the calculated meltwater discharge may be used to evaluate
infiltration and surface runoff, the latter being a melt in excess of soil infil-
tration (see e.g. Feiccabrino et al., 2008). Such an estimation must also con-
sider rain rates (Fig. 6) which may affect the effective infiltration capacity.

To infer the approximate daily infiltration into soils and how much
of discharge leaves as a surface runoff we used a semi-empirical Soil
Conservation Service (SCS) model, a suitable approach for cases that
lack data (Gabellani et al., 2008).

~ (P—025)?
R="F 085 (13)

for P> 0.2S, where P in our case is = (Ag(t) + Lp(t)), with Lp denoting
rain, and

1000

5:24'5(W_]0>’ (14)
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where CN corresponds to a curve number parameter depending
on soil type and moisture conditions (Gabellani et al., 2008).
For soil conditions at snow patch #1 CN; = 86, for snow
patch #2 CN, = 82.

Using this simplified approach (with results illustrated for all sce-
narios considered here in Fig. 15), it may be concluded that most rain
leaves through infiltration, while snow patch meltwater discharge
also produces a large amount of surface runoff as infiltration excess. Re-
markable spikes in surface runoff from snow patch #1 in the summers
of 2012 and 2013 (Fig. 15) correspond to the superimposition of melt-
water discharge with rain from typhoons.

Note that the above estimates correspond to the maximum expected
infiltration. In the opposite case, with negligible infiltration (i.e. CN =
95 — 100), almost all water from melt and rain will contribute to surface
runoff (up to 15 cm w.e. per day). For example, at snow patch #2, this
may be true if soil is close to saturation. This applies to snow patch #1
as well, if permafrost is present. Detailed in situ observations are needed
to determine which conditions dominate at the sites.

Nevertheless, the inferred values of peak daily discharge and possi-
ble surface runoff provide an estimation for the required capacity of
the recommended drainage/water treatment system (Lobkina and
Gensiorovsky, 2012).
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4.5. Chemical load

The modeled cumulative amount of presumably discharged chemical
elements is shown in Fig. 16. It is directly proportional to concentrations
measured in 2011 (Table 1). The largest dissolved amounts correspond
to salts, which dissociate into anions and cations (ClI~, Na*, Ca®>™, Br™).
A large portion of the salts is caused by pollution, mainly involving the
rock salt (NaCl) used to deice roads. Additional salt inputs are related to
the seaboard geography of the regions, which affects the chemistry of pre-
cipitation due to the proximity of the sea (i.e. scavenging of marine aero-
sol by precipitation). Such conclusions are in line with a chemical analysis
of soils at the sites, indicating salinization of soils at the base of the snow
patches and in areas of snow patch meltwater discharge (Gensiorovsky
etal, 2013).

The smallest cumulative amounts of discharged chemical elements
are heavy metals, for example TPLz, is equal to several kg per year.
Their main source is associated with vehicle exhaust accumulating in
the urban snowpack.

All these estimates (Fig. 16) should be treated with caution because
they are based on a single-point analysis and measurements with a
greater spatial and temporal extent are required before more robust
conclusions may be reached.
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Fig. 16. Cumulative discharge of dissolved chemical elements in 2011-2014 at snow patches #2 (upper row) and #1 (lower row); the left side panels are for the min TWE case; the right
side panels are for the max TWE case. Cases when «vis constant or a function of debris are not shown by different colors due to small variability. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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Note also that the estimates above correspond to an average compo-
sition, which could be exceeded by an instantaneous concentration in
the meltwater because of possible draining of highly concentrated
liquid water inclusions between snow/ice particles or the draining of
solids and particles during melting due to a fractionation process and
preferential elution (Goto-Azuma, 1998).

Additionally, for example, at snow patch #2 suspended solids may
contribute annually up to about 2-9 x 10 tons of material remaining
after melting. Note, however, that this estimate is based on concentrations
reported for another region (Feiccabrino et al., 2008) and is provided only
to show an order of magnitude.

The most poorly understood process possibly taking place on the
snow patches is related to photochemical ozone production/destruction
during snow melt periods (Helmig et al., 2009). Another possible
process is an injection of a higher solute content into the snow from
the polluted supra-snow debris layer by rain. Since, to the best of our
knowledge, this paper describes one of the largest anthropogenic
cryospheric objects ever documented for an urban territory, it would
be of interest to address such questions through future studies.

5. Summary

Optimization of snow disposal in urban areas is a difficult multi-
component task, requiring consideration and analysis of many
interconnected processes. To develop such a holistic procedure, we
have attempted in this study to evaluate ablation and the possible
environmental impact of summer melting from two artificial snow
patches which are formed (or sustained) each year by snow disposal
operations near the town of Yuzhno-Sakhalinsk, Russia. We employed
a temperature-based melt-index model, that reasonably reproduced
the overall behavior of two distinct snow/ice bodies. However, it was
found that the same constant PDD factors did not make it possible to de-
scribe the evolution of the mass-balance of both snow patches. Namely,
the first snow patch exhibited twice lower melt rates than the second
one, despite their relatively close locations (9.7 km apart). This illus-
trates a peculiar case requiring investigation of a possible valley-scale
environmental variability responsible for such diverging behavior
despite seemingly similar environmental forcings. Furthermore, the
study points out that it may be misleading to make conclusions based
only on one snow patch investigated here.

After introducing a debris-modulated « factor and conducting a
sensitivity analysis, we found that the same PDD factors can work well
for both snow patches if debris properties differ. We suggest that the
lower melt rates are associated with the quality of snow and waste
disposed at the site, resulting in a debris cover that could provide a
more significant insulating effect on snow patch #1.

Furthermore, we show that the timing of snow patch meltwater dis-
charge is different from the local river hydrology driven by the melting
of the natural snowpack. Snow patch meltwater could affect the local
ecosystems and neighborhoods due to both the timing and the large
volume of cold and polluted acidic waters they produce. Differences
with previously recognized acidification of streams and lakes due to
the melting of the natural snowpack (Tranter et al., 1986; Tsiouris
et al., 1985) remain to be understood.

We estimate that on particularly hot days, the daily amount of melt-
water discharged over the area of snow storage sites is comparable
to liquid precipitation from typhoons over the same area. For the
conditions of snow patch #1, a worst case scenario, an intense melting
episode occurring at nearly the same time as a typhoon could produce
flooding of neighboring infrastructures.

5.1. Future suggestions
It is not entirely certain that our approach to modeling melting is

valid over longer periods. To complete the approach with an energy bal-
ance model, which could consider the influence of debris, and to better

constrain the evolution of the described snow/ice bodies, the following
set of future observations and developments is recommended to reduce
random and epistemic uncertainties: 1) a regular and relatively
inexpensive unmanned aerial vehicle (UAV) derived digital elevation
model (DEM) to help better estimate volumetric changes over large
areas of the snow patches (e.g. Ryan et al., 2014); 2) stake ablation
measurements coupled with snow density profiles at several locations
to reduce the uncertainty of the total water equivalent change; 3) a
more spatially extensive chemical analysis of snow properties, including
suspended solids, at the end of accumulation season to obtain robust
chemical projections; 4) measurements of temporal and spatial varia-
tions in albedo and debris thickness to verify how exactly debris cover
regulates fluctuation of snow patches through an application of more
advanced energy and mass balance models such as those proposed by
Bozhinskiy et al. (1986) and Nicholson and Benn (2006) or the Swiss
‘SNOWPACK' model (Bartelt and Lehning, 2002; Lehning et al., 2002a,
2002b); 5) development of a physical approach to measure and model
the surface energy balance and the thermal heat transfer through the
debris cover layer, and 6) continuous monitoring of the water flux and
water quality of nearby streams to serve as a proxy for melting and pol-
lution discharge (Goto-Azuma, 1998).

If corroborated and documented by follow-up campaigns, the find-
ings presented in this paper may help authorities make better informed
and more sustainable decisions concerning the management of snow
disposal sites. Our results already point out certain parameters
that are missing and that could be very useful if measured. Finally,
this case study illustrates how fundamental glaciological knowledge
can provide valuable information when addressing practical geo-
engineering problems.
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