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Abstract—The Circum-Pacific Late Albian–Cenomanian orogenic belts (including the Sikhote-Alin–West-
ern Sakhalin belt) were formed as a result of the deformation of mainly epioceanic terranes as fragments of
Jurassic–Early Cretaceous accretionary wedges with ophiolites and other fragments of oceanic crust, turbid-
ite basins, and island-arc systems. To the west of the Sikhote-Alin–Northern Sakhalin belt and orthogonally,
the previously consolidation structures include the Bureya–Jiamusi–Khanka fragment of the orogenic belt
of the Late Cambrian–Early Ordovician consolidation of the Late Proterozoic–Cambrian complexes.
Within this belt, four isolated outcrops of the Heilongjiang complex are mapped. This complex combines
metamorphic rocks of the epidote–amphibolite and glaucophane–schist facies and represents a fragment of
a Jurassic accretionary wedge. It was assumed that these outcrops marked a suture; in particular, they repre-
sent the remains of the closed Mudanjiang paleoocean, separating the original Jiamusi terrane (and the
Bureya–Jiamusi–Khanka belt) located to the west of Central Asia structures. This paper provides data that
indicate that the Heilongjiang complex does not mark a suture, but is an underground near-horizontal con-
tinuation of the marginal continental accretionary wedge of the Nadanhada–Bikin terrane (flat subduction
model) brought to the surface at the antiform bending site. The unity of the compared parts of the accretion-
ary wedge is emphasized by the close matrix ages, the similarity of detritus zircon populations, and similar
composition and age of allochthonous inclusions (limestone, chert, Late Paleozoic, and Early Mesozoic
basalt). One important common feature is that Late Paleozoic and Early Mesozoic basalts from allochtho-
nous inclusions occur as the N-MORB and OIB types in both cases, without any suprasubduction volcanism
traces in the matrix. The Heilongjiang complex forms, according to this interpretation, a tectonic window
among the more ancient structures of the Jiamusi terrane. There is no need to assume the existence of a
Mudanjiang Ocean to explain the formation of the Heilongjiang complex. The structural features of this com-
plex and its bedding conditions can be explained by the f lat subduction processes of the Pacific slab in the
Jurassic and its deformation in the Early Cretaceous.

Keywords: Heilongjiang complex, Jurassic accretionary wedge, high-pressure metamorphism, isotope geo-
chronology, f lat subduction, and Northeast China
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INTRODUCTION
It can be considered as established that the earliest

Circum-Pacific Late Albian–Cenomanian orogenic
belts (including the Sikhote-Alin–Western Sakhalin)
were formed due to the deformation of predominantly
epioceanic terranes as fragments of Jurassic–Early
Cretaceous accretionary wedges with ophiolites and
other fragments of oceanic crust, turbidite basins, and
island arc systems [20]. The Late Albian–Ceno-
manian orogeny was the final stage of the oblique col-
lision of a relatively motionless continent and the
Paleopacific plates actively moved in the Early Creta-

ceous from the south and southeast to the north and
northwest [1, 4, 20]. This collision resulted in a gigan-
tic system of marginal–continental left strike-slips in
the Early Cretaceous [7, 13, 65, 66, etc.]. This system
includes major faults of the Sikhote-Alin region and
the areas located to the west such as Donghua–Mis-
han (Alchan), Arsen’evsky, and Central Sikhote-Alin
[7, 65, 66]. The total displacements along these faults
reached hundreds, and according to some estimates
[4, 33], even a few thousand kilometers. Terranes as
fragments of the Jurassic accretionary wedge
(Samarka, Nadanhada–Bikin, etc.) are traced for a
279
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assigned to the Ordovician–Silurian on the geological
map [2]. However, U–Pb isotope dating performed in
recent decades by the method of accessory and detrital
zircons in the rocks of the complex has led to a com-
plete revision of the ideas of their formation time
towards a significant rejuvenation. The youngest detri-
tal zircon populations in metamorphic schists formed
from terrigenous rocks cover the age of 190–167 Ma
(Early and Middle Jurassic) [77]. Approximately 55%
of the detrital zircons are dated from 297 to 180 Ma
with peaks at 270–245, 230–200, and 200–180 Ma,
while 27% of the detrital zircons are estimated at 544–
412 Ma with a peak of 500–480 Ma. Proterozoic detri-
tal zircons (~15%) dated at 2352–595 Ma were also
identified and most of them were referred to the Neo-
proterozoic [26]. The Ar–Ar dates of micaceous min-
erals (phengite, biotite, and muscovite) of metaterrig-
enous rocks (making it possible to determine the time
of metamorphism) were grouped in a relatively narrow
range of 178–146 Ma (end of the Early–Late Jurassic)
[22 and references therein].

The Heilongjiang rocks are dominated by green
and blue schists and amphibolites as metamorphosed
basalts, which sometimes retain a pillow structure,
which are geochemically comparable with E-MORB
tholeiitic basalts and OIB alkali basalts of seamounts
[30, 72, 76]. Based on SHRIMP and LA–ICP–MS
U–Pb zircon dating the age of the blue schists and
amphibolite protoliths is in the range of 356–195 Ma
[22 and references therein, 27, 74]. According to the
LA–ICP–MSU–Pb data, the age of magmatic zir-
cons from blue schists is estimated at 162–142 Ma
[76].

The complex also contains quartzites with remains
of radiolarians (metachert (?)) and, occasionally, of
Fe–Mn nodules [72, 76]. The association of these
rocks (as well as tectonic serpentinite lenses), which
are considered as ophiolites, is directly indicative of
the fact that the Heilongjiang complex is enriched in
oceanic material. Detrital zircons in various kinds of
mica schists (metamorphosed terrigenous rocks), as
mentioned, contain a constant impurity (up to 15%) of
magmatic grains with an age of 300–2500 Ma [30, 77].
In other words, this belongs to the sedimentation in
the continental margin setting. The combination of
fragments of oceanic structures and sedimentary rocks
of near-continental origin in one structure, as well as
the glaucophane–schist metamorphism in them, lead
to the conclusion that the Heilongjiang complex is a
metamorphosed mélange zone within the Early–
Middle Jurassic accretionary wedge [62, 72, 77].
Jurassic metamorphosed terrigenous rocks (occasion-
ally, serpentinites) likely formed the mélange matrix,
while the Carboniferous–Permian and Triassic meta-
basalts, as well as the associated metamorphosed chert
and carbonate rocks, formed blocks and plates in this
mélange. Direct evidence of such relationships can be
observed in the quarries near Yilan, where mica schists
contain blue schist, amphibolite, and quartzite blocks
RUSSIAN JOUR
and plates ranging in size from fractions of a meter to
200 m [21]. In addition, the Heilongjiang complex
contains the adakite-type monzogranite veins with an
age of 175–161 Ma [22].

The Role of the Mudanjiang Fault 
in the Regional Structure

The Heilongjiang complex is constrained to the
west by the roughly NS-trending Mudanjiang Fault,
which is thought to separate different terranes. In the
east, they include the Jiamusi terrane and the Bureya
superterrane, while in the west they form a block with
different names (Songliao, Songliao–Xilinhot, and
Songnen–Zhangguangcai Range Massif (block)) [28,
60, etc.]. We will use the name “Songliao block.”

The Jiamusi terrane and the adjacent Khanka
superterrane have a similar structure and good cor-
relation of geological events in the range of approxi-
mately 755–115 Ma. The most ancient complexes of
the Jiamusi terrane (from 895 Ma) are represented by
Late Proterozoic–Early Cambrian protoliths meta-
morphosed in the granulite facies in the Cambrian–
early Ordovician and two complexes of the Early
Paleozoic granitoids dated at 530–502 and 490–
470 Ma [59, 68 and references therein]. The same Late
Proterozoic and Early Paleozoic complexes are distin-
guished in the Bureya and Khanka superterranes [18,
47, 50]. The Songliao block is assumed to be different
from the Jiamusi terrane and the Bureya superterrane
in the occurrence of Paleoproterozoic rocks that were
uncovered during drilling of the Songliao depression
[59]. Meanwhile, the Early Devonian deposits of the
Jiamusi terrane and the Songliao block are of the same
type in both the facies and age of detrital zircons. This
means that these blocks were consolidated before the
Early Devonian [44]. The similarity of the facies and
detrital zircon distribution spectra in the Permian
deposits of the Jiamusi terrane and the Songliao block
[63] suggests that this consolidation continued in the
Permian as well.

In the Minor Xingang Ridge and to the east of it
similar Early Paleozoic granitoids of four intrusion
stages in the range of 505–450 Ma are distributed on
both sides of the Mudanjiang Fault [58]. This means
that the Proterozoic and Cambrian crust was pro-
cessed in a similar way in the Songliao block and ter-
ranes of the Bureya–Jiamusi belt, despite the fact that
the Songliao block contains more ancient crustal
material than terranes of the Bureya–Jiamusi belt
[60]. The Permian granitoids of the Songliao block
and the Jiamusi terrane are also of the same type.

The roughly NS-trending band of Late Triassic–
beginning of Early Jurassic plutonic and, less often,
volcanic rocks is located mainly to the west of the
Mudanjiang Fault. However, Late Triassic volcanic
rocks are also present east of the Mudanjiang Fault
[35]. Late Triassic and Early Jurassic igneous rocks of
NAL OF PACIFIC GEOLOGY  Vol. 15  No. 4  2021
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these regions with ages of 230–190 Ma occur as simi-
lar bimodal and alkali ranges with A-type granites and
rhyolites [53 and references therein, 54, 55], which are
traditionally regarded as resulting from postcollisional
extension after the closing of the Paleo-Asian Ocean
[35, 54]. The attempt to represent the Triassic–Juras-
sic igneous rocks of the Zhangguangcai–Minor Xin-
gang ridges as constituting a suprasubduction mag-
matic arc was related directly to the reconstruction of
the Mudanjiang Ocean [31, 32]. Triassic–Early Juras-
sic igneous rocks of the Zhangguangcai–Minor Xin-
gang ridges make up a large belt of such rocks with ages
of approximately 230–190 Ma, which extends from
the Bureya superterrane inclusively [49] through the
pre-Jurassic continental margin of East Asia [53] to
the Southeast China [29] (Fig. 1).

Jurassic igneous rocks younger than 190 Ma, which
lack an areal distribution, occur as rare small intru-
sions of OIB-type dolerites (approximately 188 Ma)
[28] and I-type granites (191–163 Ma) in the Zhang-
guangcai Ridge [75] and as adakite-type and granodi-
orites (182 and 181 Ma) in the Minor Xingang Ridge
[31].

It should be noted that the northern continuation
of the Mudanjiang Fault was not found in Russia. The
Uril Formation as a continuation of the Heilongjiang
complex roughly wedges out on the left bank of the
Amur River, subducting under the Early Paleozoic
granite metamorphic complex [10]. In the south, this
fault joins the zone of the Donghua–Mishan (Alchan
in the Primorye area) Fault as a left strike-slip with a
horizontal displacement amplitude of at least 250 km
[65, 66]. It is noteworthy that due to its small scale the
Mudanjiang Fault is not demonstrated at all on the
fault diagrams of the Tan-Lu system compiled by the
researchers Xu Jaw [65, 66] and V.P. Utkin [13, etc.].

Thus, the Mudanjiang Fault should be considered
as a minor branch of the larger left strike-slip as the
Donghua–Mishan Fault. It by no means separates
blocks with drastically different geological histories
and it is impossible to represent it as a continent–
ocean boundary for hundreds of millions of years, as
suggested in the reconstructions discussed above.

JURASSIC SIKHOTE-ALIN ACCRETIONARY 
COMPLEXES AS PROBABLE ANALOGS 

OF THE HEILONGJAING COMPLEX
The Structure of the Jurassic Sikhote-Alin 

Accretionary Complexes
The Khabarovsk and Nadanhada–Bikin terranes

are located east of the Jiamusi terrane and, accord-
ingly, the Heilongjiang outcrops (Fig. 2). They are
links in the chain of terranes as fragments of the Juras-
sic accretionary wedge of the East Asian margin,
which were formed in the process of successive sub-
duction of the Paleopacific Plate under the Eurasian
Plate [4, 8, 41, 45]. In the area under consideration,
RUSSIAN JOURNAL OF PACIFIC GEOLOGY  Vol. 15 
the Nadanhada–Bikin terrane is located at the bend of
the accretionary wedge, which was formed as a result
of the Khanka superterrane extension to the northeast
along the Donghua–Mishan (Alchan) Fault [17].

The Khabarovsk terrane consists of repeated vari-
sized tectonic plates and blocks composed of rocks of
the oceanic plate and terrigenous mélange structures
of the accretionary wedge matrix. The oceanic plate
rocks include Triassic and Early Jurassic cherts and
jaspers and Aalen–Bajocian siliceous–clayey depos-
its, which are replaced by Late Bathonian–Middle
Callovian mudstones. The accretionary wedge matrix
is composed of Oxfordian–Tithonian siltstones and
sandstones [39 and references therein]. The subduc-
tion mélange, along with varisized fragments and
plates of Triassic and Jurassic cherts, contains basalts,
gabbroids, Late Carboniferous, Permian, and Late
Triassic limestones and metamorphic schists [6 and
references therein, 8, 39]. The Tithonian subduction
mélange is replaced without visible unconformity by
Early Cretaceous sandstones, which we consider as
postsubduction deposits [8, 39, 40].

The Nadanhada–Bikin terrane is geographically
divided into two parts: the southwestern part (Nadan-
hada or Wandashan) [70, 73] located in China and the
northeastern part (Bikin) located in Russia [8, 40]. In
China, the terrane is divided into two structural units.
The upper position is occupied by the Yuejinshan
complex and the lower position is occupied by the
Raohe complex [73]. There are three complexes in
Russia: Khor (upper, Toarcian–Callovian analogue of
the Yuejinshan complex), Ussuri (middle, Batho-
nian–Oxfordian analogue of the Raohe top, and Ulit-
kinsky (lower, Kimmeridgian–Tithonian analogue of
the Raohe bottom [8, 40].

The Yuejinshan complex is composed of terrige-
nous rocks metamorphosed in the greenschist facies
with metabasalt, metagabbro, and meta-ultrabasite
layers of the ophiolite assemblage, as well as marbles
and quartzites that occasionally contain high-pressure
and medium-temperature minerals [73]. Ophiolite
protolith was formed in the Late Carboniferous–Early
Permian [69 and references therein].

Greenschists of the complex are dated by Rb–Sr at
188 ± 4 Ma (Early Jurassic) [67]. Judging from their
geochemical characteristics, metabasalts correspond
to the MORB and OIB compositions [25, 73]. The age
of the Yuejinshan complex matrix was not determined;
however, based on the complete analogy of age and
composition of paleooceanic inclusions in the Khor
complex, as well as the upper and most ancient com-
plexes of the Jurassic accretionary wedge of the
Samarka terrane, whose matrix was dated in terms of
radiolarians [8, 39, 40], it can be taken as Late Toar-
cian–Middle Jurassic. The Yuejinshan complex is a
complete analogue of the Kalinovsky and Sebuchar
complexes located south of the Samarka terrane with
the Early–Middle Jurassic terrigenous matrix [8, 40].
 No. 4  2021
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The underlying Raohe complex is composed of
unmetamorphosed Triassic–Early Jurassic chert,
Carboniferous–Permian and Triassic limestone and
basalt forming inclusions, blocks, and layers in the
Middle–Late Jurassic terrigenous matrix [40, 42]. It
should be noted that the Early Cretaceous (Berriasian)
deposits of the Raohe complex differ from the Late
Jurassic in occurrence of the Late Jurassic detrital zir-
con population [42].

One distinctive feature of the Raohe complex is the
Middle Jurassic magmatic assemblage of pyroxenite,
gabbro, plagioclasite, plagiogranite, and basalt. The
age is 172 Ma for basalts and their tuffs in terms of zir-
cons [52] and 167–169 Ma for plagioclasites and pla-
giogranites [56]. This assemblage is considered as a
fragment of an oceanic island of plume origin in the
accretionary wedge [52, 56]. The geochemical charac-
teristics of basalts are indicative of their belonging to
the OIB type, i.e., seamount basalts [52, 57, 73].

The Jurassic part of the Raohe complex is analo-
gous to that of the Khabarovsk terrane, as well as the
lower structural levels of the accretionary wedge of the
Samarka terrane with the Middle–Late Jurassic ter-
rigenous matrix. It should be noted that the subduc-
tion mélange time was estimated using radiolarian
analysis at the Toarcian (approximately 180 Ma),
while the subduction completion was referred to the
Tithonian in different parts of the Samarka terrane [8,
39, 40]. Berriasian deposits that developed sporadi-
cally in fragments of the Sikhote-Alin accretionary
wedges occur as terrigenous deposits that build the
Tithonian subduction mélange section [8, 39, 40].
They are drastically different from the Jurassic depos-
its in detrital zircon populations [42]. As an example,
the U–Pb age of detrital zircons and the Hf isotopic
composition of clastic rocks in the Raohe complex and
the Khabarovsk terrane are indicative of considerable
differences in the feeding provinces in the Jurassic and
Early Cretaceous. In particular, the Middle–Late
Jurassic sandstones yield the youngest concordant zir-
con age of 167 Ma, while the Early Cretaceous sand-
stones, among others, contain zircons dated at 167–
140 Ma [6, 42].

Comparison of the Heilongjiang Complex 
and the Sikhote-Alin Accretionary Wedges

The age distribution of detrital zircons and
monazites in the Heilongjiang complex and in the Sik-
hote-Alin Jurassic accretion wedges is similar (Fig. 3).
The similar ages of the youngest zircons (167 Ma) and
their age distribution suggest a consolidated feeding
province. It is noteworthy that oceanic plagiogranites
are dated at 167–169 Ma in the Raohe complex [56]
and the age of the basalts is 172 Ma [52].

One important common feature of the compared
Heilongjiang, Khabarovsk, Nadanhada–Bikin, and
Samarka accretion complexes is the allochthonous
RUSSIAN JOUR
material of Paleozoic basalts of N-MORB and OIB
oceanic settings dominated by the latter [3, 12]. The
absence of heavy minerals typical of volcanic arcs in
the terrigenous matrix of the Samarka terrane is note-
worthy [9]. Hence, the compared accretionary wedges
are not characterized by the impact of suprasubduc-
tion volcanism and traces of a late Early Jurassic–
Tithonian suprasubduction volcanic belt (180–
150 Ma) related to these wedges [1, 4, 53, 64].

EARLY CRETACEOUS DISLOCATION 
FEATURES IN THE HEILONGJIANG 

COMPLEX
The Heilongjiang metamorphic rocks are marked

by traces of the most active multistage deformations.
According to the investigation results [21, 72, 77],
metamorphic rock foliation corresponding to the final
deformation stage has a stable ENE (60°–90°) strike
and is oriented almost orthogonally with respect to the
NS-trending Mudanjiang Fault. Foliation dip angles
are from relatively f lat (20°–45°) to vertical; over-
turned bedding should not also be ruled out. Based on
the detailed structural studies carried out in the vicin-
ity of Yilan city [21], the Heilongjiang outcrop is
observed as an antiform core; the allochthonous com-
plex composed of more ancient rocks of the Jiamusi
terrane is located on the wings of this antiform (Figs.
4, 5). The antiform was formed (final deformation
stage) in a compression field oriented from SSE to
NNW [21]. At such a compression direction, left-
sided displacements should be assumed along the
Mudanjiang Fault trending NS and restricting out-
crops from the west (Fig. 5).

Such paragenesis of structural elements, which is
common for the Sikhote-Alin region, records the
Early Cretaceous deformation stage (transform mar-
gin period) [1, 4, 7, 13]; this means that the described
deformations are evidently secondary. The Mudanji-
ang Fault was likely formed precisely in the Early Cre-
taceous, and the Heilongjiang outcrops observed
along it occur as antiform cores, in fact, strike-slip
drag folds rapidly fade at a distance from the maternal
fault.

THE FORMATION MODEL 
OF THE HEILONGJIANG COMPLEX

The correct identification of the Heilongjiang
complex as a fragment of the suprasubduction accre-
tionary wedge resulted in far-reaching and, in our
opinion, very controversial conclusions that the Hei-
longjiang is a complex that marks a suture. In other
words, the Heilongjiang is suggested to be the remains
of the collapsed Mudanjiang Paleoocean, which orig-
inally separated the Jiamusi terrane (and the entire
Bureya–Jiamusi–Khanka belt) from the structures of
the Central Asian orogenic belt (CAOB) located to the
west [22, 26, 71, 75]. In addition, it was occasionally
NAL OF PACIFIC GEOLOGY  Vol. 15  No. 4  2021
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The unity of the accretionary complexes that are
being compared is emphasized by their similar matrix
age, analogous age groups of detrital zircons, and
identical compositions and ages of allochthonous
inclusions (limestone, chert, Late Paleozoic and Early
Mesozoic basalts). The Heilongjiang complex is
exposed, according to this interpretation, in the tec-
tonic window among more ancient rocks of the
Jiamusi terrane. Additional confirmation is seen in the
fact that granites and volcanic rocks in the western and
southern that frame the Heilongjiang outcrops are
dated as Triassic–early Jurassic (246–190 Ma) [49, 51,
52, 67]; in other words, they are more ancient than the
synsubduction metamorphic rocks of this complex.
This model also explains sporadic Jurassic adakites
[21] in association with granitoids in the western fram-
ing of the Heilongjiang complex [75].

CONCLUSIONS
There is no need to assume a Mudanjiang Ocean to

explain the formation of the Heilongjiang complex.
The structural features of this complex and its bedding
conditions can be explained by f lat subduction pro-
cesses of the Pacific slab in the Jurassic and its defor-
mation in the Early Cretaceous.
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