ГЕОХИМИЯ И ВОЗРАСТ МЕТАМОРФИЧЕСКИХ ПОРОД ХАВЫВЕНСКОЙ ВОЗВЫШЕННОСТИ ВОСТОЧНОЙ КАМЧАТКИ

© 2007 г. И. А. Тарарин*, З. Г. Бадрединов*, С. И. Дриль**

*Дальневосточный геологический институт ДВО РАН 690022, Владивосток, просп. 100-летия Владивостока, 159, e-mail: itararin@mail.ru **Институт геохимии им. А.П. Виноградова СО РАН 664033, Иркутск, ул. Фаворского, 1a, e-mail: sdril@igc.irk.ru Поступила в редакцию 28.10.2005 г.

Среди метаморфических пород Хавывенской возвышенности Восточной Камчатки выделено два разнородных комплекса метавулканических пород, сопровождаемых подчиненным количеством метаосадочных образований. В составе первого комплекса, слагающего нижнюю толщу видимого разреза возвышенности, преобладают лейкократовые амфибол-слюдистые (±гранат) и эпидотслюдистые (±гранат) кристаллические сланцы, образовавшиеся по андезитам и дацитам и их высококалиевым разностям известково-щелочной серии островных дуг. Второй комплекс, формирующий верхнюю толщу возвышенности, состоит из спилитизированных базальтоидов, превращенных в эпидот-амфиболовые и фенгит-эпидот-амфиболовые зеленые сланцы, образующих совместно с кварцитами, серпентинизированными перидотитами, серпентинитами и габброидами окраинноморскую офиолитовую ассоциацию. Показано, что высокие содержания литофильных элементов с большим ионным радиусом, высокие K/La, Ba/Th, Th/Ta и La/Nb отношения в сочетании с глубоким Ta-Nb-минимумом, низкими (La/Yb)_N и высокими ⁸⁷Sr/⁸⁶Sr отношениями свидетельствуют о субдукционной природе кристаллических сланцев нижней толщи, позволяя предполагать формирование исходных вулканитов в надсубдукционной обстановке Озерновско-Валагинской (Ачайваям-Валагинской) островной вулканической дуги кампан-палеогенового возраста. Установлено, что зеленые сланцы верхней толщи характеризуются совмещением признаков деплетированных расплавов типа толеитов срединно-океанических хребтов и субдукционных расплавов, обусловливающих глубокий Ta-Nb-минимум, низкие $(La/Yb)_N$ и повышенные K/La и ⁸⁷Sr/⁸⁶Sr отношения, позволяющие предполагать образование зеленых сланцев в обстановке окраинного бассейна перед фронтом Озерновско-Валагинской островной дуги. Новые К-Аг-датировки возраста метаморфизма пород Хавывенской возвышенности, варьирующие от 32.4 до 39.3 млн лет, показывают, что метаморфические преобразования исходных пород происходили в эоцене и обусловлены процессами коллизии и аккреции островодужных комплексов Озерновско-Валагинской и Кроноцкой островных дуг с Азиатским континентом и закрытия предостроводужных океанических бассейнов перед их фронтом. Современное положение коллизионного шва, маркирующего палеозону субдукции Озерновско-Валагинской дуги и приуроченного к Хавывенскому погребенному поднятию Центрально-Камчатской депрессии, фиксируется мощными линейными аномалиями поля силы тяжести.

В настоящее время широким распространением пользуются представления, что формирование основных структур Камчатки (рис. 1) произошло в позднем мезозое-кайнозое в результате аккреционно-коллизионных процессов [1–12 и др.]. Предполагается, что одним из главных событий в геологической истории этого региона была коллизия Ачайваям-Валагинской [4] или Озерновско-Валагинской [1, 5] островной дуги с континентом, когда меловые отложения окраинного моря и островной дуги были надвинуты на гетерогенные образования континентальной окраины Азии.

По преобладающему составу стратифицированных комплексов верхнего мела Олюторско-Камчатская область разделяется на северо-западную (Западно-Камчатско-Укэлаятскую) и юго-восточную (Восточно-Камчатско-Олюторскую) [13, 14]. В составе верхнего мела северо-западной зоны преобладают глубоководные песчано-сланцевые комплексы, формировавшиеся у подножия континентального склона пассивных окраин [15]. Состав осадочных пород свидетельствует, что в областях размыва преобладали интенсивно дислоцированные вулканогенно-осадочные толщи, охваченные неглубоким эрозионным срезом. В разрезах позднего мела юго-восточной зоны преимущественным развитием пользуются вулканогенные образования (преимущественно туфы и туфогенно-осадочные породы), слагающие выступы среди кайнозойских отложений [10]. Наиболее крупные выходы вулканогенных пород верхнего мела обнажаются в Олюторском и Ветвейском хребтах Корякского наго-

Рис. 1. Схема тектонического строения Камчатки и Корякского нагорья, по [5]. *1* – кайнозойский чехол; *2* – Кроноцкая островная палеодуга (поздний мел–эоцен); *3* – Восточно-Камчатская аккреционная зона; *4* – Западно-Камчатско-Корякский вулканический пояс (средний эоцен–олигоцен); *5* – Укэлаятско-Лесновский прогиб (поздний мел–средний эоцен); *6* – Озерновско-Валагинская (Ачайваям-Валагинская) островная палеодуга (поздний мел–средний эоцен); *6* – Озерновско-Валагинская (Ачайваям-Валагинская) островная палеодуга (поздний мел–палеоцен); *7* – Охотско-Чукотский вулканический пояс (ранний–поздний мел); *8* – мезозойские аккретированные террейны; *9* – метаморфические комплексы Срединного, Ганальского хребтов и Хавывенской возвышенности Камчатки; *10* – домеловые комплексы Сибири; *11* – Ватыно-Лесновско-Андриановский шов: а – установленный, *6* – предполагаемый; *12* – Тюшевско-Говенский шов – надвиг Гречишкина: а – установленный, *6* – предполагаемый; *13* – зоны субдукции: а – современная, *6* – древняя; *14* – зоны сдвигов; *15* – разломы.

рья, в северной и южной частях Срединного хребта и в Восточных хребтах Камчатки. К ним приурочены тектонические линзы серпентинитов и габброидов, рассматриваемых в качестве фрагментов офиолитовых комплексов.

Границей между вулканогенными породами позднего мела юго-восточной зоны с одновозрастными терригенными комплексами северо-западной зоны является крупный Ватыно-Лесновско-Андриановский шов, формировавшийся в течение эоцена–начала миоцена и перекрытый среднеэоценовыми эффузивами кинкильской свиты и прорванный комагматичными им гранитоидами [4, 5, 10, 16, 17]. Хавывенская возвышенность, расположенная в западной части п-ова Озерного Восточной Камчатки, приурочена к юго-восточной зоне развития верхнемеловых вулканогенных комплексов, располагаясь в северной части Центрально-Камчатского прогиба, выполненного четвертичными рыхлыми и вулканогенными отложениями. Геолого-съемочные и тематические исследования позволили детально изучить геологическое строение возвышенности, получить данные о составе и минералогии слагающих ее низкотемпературных метаморфических пород [18–20]. Однако геохимические особенности пород возвышенности и возраст метаморфических преобразований до сих пор остаются не изученными. Поэтому целью данной работы было получение инструментальных геохимических данных, позволяющих оценить геодинамическую обстановку формирования исходных пород Хавывенской возвышенности.

МЕТОДИКА ИССЛЕДОВАНИЙ

Состав минералов определялся на микроанализаторе "Camebax" в Институте вулканологии и сейсмологии ДВО РАН (г. Петропавловск-Камчатский). Рабочие условия съемки: напряжение 20 kV, ток 50 mA. Ошибка анализов – не более 3%.

Содержание петрогенных элементов определялось методом "мокрой" химии в Дальневосточном геологическом институте ДВО РАН (г. Владивосток).

Определения концентраций рассеянных и редкоземельных элементов проводилось методом ICP-MC в Иркутском Центре коллективного пользования на масс-спектрометре VG Plasmaquad PQ2+. Калибровка прибора осуществлялась по международным стандартам BHVO-1, AGV-1 и BIR-1 и внутрилабораторному стандарту базанита U-94-5. При повторных измерениях стандартное отклонение (1 σ) для большинства элементов не превышало 5%, а при определении Pr (Се и Та в AVG-1) не превышало 10%. Воспроизводимость результатов измерений Pb в BHVO-1 составляла 5–10%. Содержание Ni определено количественным спектральным анализом в ДВГИ ДВО РАН.

Определение изотопного состава Sr пород проводилось в Институте геохимии CO PAH на массспектрометре МИ-1201Т в однолучевом режиме. Подготовка проб к масс-спектрометрическому анализу осуществлялась по методике, описанной в [21]. Правильность изотопного анализа контролировалась по стандарту ВНИИМ, величина ⁸⁷Sr/⁸⁶Sr в котором составила 0.70800 ± 13 (n = 26), при рекомендованном значении ⁸⁷Sr/⁸⁶Sr = 0.708028 [22]. Нормирование измеренных величин изотопных отношений ⁸⁷Sr/⁸⁶Sr в пробах к рекомендованному значению стандарта ВНИИМ не проводилось.

ГЕОЛОГИЧЕСКАЯ ПОЗИЦИЯ МЕТАМОРФИЧЕСКИХ ПОРОД

Метаморфические образования Хавывенской возвышенности обнажаются в северной части крупного Хавывенского поднятия структур фундамента Центрально-Камчатского прогиба, прослеживаемого по гравиметрическим и магнитным данным от широты пос. Мильково на юге до залива Уала на севере на протяжении около 500 км [23, 24]. Это поднятие характеризуется мощной зоной положительных линейных гравитационных аномалий, ограниченных интенсивными градиентными ступенями, представляющими крупные разломы. В пределах самой возвышенности уровень гравитационного по-

ГЕОХИМИЯ № 7 2007

ля достигает максимальных значений, а остальные блоки Хавывенского поднятия перекрыты чехлом палеоген-неогеновых отложений, но предполагается, что их фундамент сходен по составу с породами Хавывенской возвышенности [25]. Хавывенское поднятие может рассматриваться "как палеозона Беньоффа, от которой к западу двигался обдукционный покров вулканогенно-кремнистых отложений" [24, с. 69].

Хавывенская возвышенность сложена метаморфическими породами зеленосланцевой фации, объединенными в хавывенскую серию проблематичного исходного возраста. Метаморфические породы серии слагают большую часть Хавывенской возвышенности, занимая площадь около 150 кв. км (рис. 2). На западных склонах возвышенности обнажаются позднемеловые (сантон-кампанские) грубообломочные вулканиты хапицкой свиты (возрастной аналог ирунейской свиты Центральной Камчатки, валагинской серии Валагинского хребта и ватынской серии Корякского нагорья), граничащие с метаморфическими образованиями по субвертикальному тектоническому нарушению. Базальтоиды этих свит обладают геохимическими чертами как океанических вулканитов, главным образом MORB, так и островодужных образований [1, 26, 27]. С юга и востока метаморфические породы хавывенской серии несогласно перекрыты терригенно-вулканогенными отложениями миоценового возраста [18–20].

В составе хавывенской серии выделены две самостоятельные толщи: нижняя – лейкократовых амфибол-слюдистых (±гранат), эпидот-слюдистых (±гранат) тонкополосчатых кристаллических сланцев и слюдистых (±гранат) кварцитовых сланцев видимой мощностью около 500 м и верхняя – эпидот-амфиболовых и фенгит-амфиболовых зеленых сланцев и эпидот-амфибол-слюдистых кварцитов общей мощностью около 750 м. Нижняя толща обнажается в ядре куполовидной структуры северозападного направления в восточной и юго-восточной частях Хавывенской возвышенности (рис. 2). Граница между толщами наблюдается в русле р. Правая Кварцевая и проводится по смене горизонтов слюдистых и гранат-слюдистых кварцитовых сланцев нижней толщи на меланократовые эпидотамфиболовые зеленые сланцы верхней толщи.

Наиболее полный разрез отложений нижней толщи вскрывается по второму левому притоку р. Правая Кварцевая (т.н. 1184–1187, рис. 2). Здесь в основании видимой части разреза обнажаются гранат-эпидот-амфибол-слюдистые, эпидот-амфибол-слюдистые и эпидот-слюдистые лейкократовые кристаллические сланцы с прослоями хлоритэпидот-амфиболовых и гранат-амфибол-слюдистых зеленых сланцев. Выше наблюдается переслаивание биотит-амфиболовых и эпидот-амфибол-слюдистых (нередко с гранатом) тонкополос-

Рис. 2. Схематическая геологическая карта Хавывенской возвышенности, по [19, 20] с изменениями авторов. *1* – современные аллювиальные отложения; *2* – современные озерно-болотные, ледниковые, делювиальные и аллювиальные отложения; *3* – кайнозойские терригенно-вулканогенные отложения; *4* – верхнемеловые (кампанские) вулканогенные образования (хапицкая свита); *5*–7 – хавывенская серия: *5*–6 – верхняя толща: пачка кварцитов (5) и нижняя пачка зеленых сланцев (6), 7 – нижняя толща – аповулканогенные лейкократовые амфибол-слюдистые (±гранат) и эпидот-слюдистые (±гранат) кристаллические сланцы; *8* – апогарцбургитовые серпентиниты и серпентиниты; *9* – тектонические нарушения; *10* – элементы залегания сланцеватости, слоистости, полосчатости; *11* – точки наблюдения, данные по которым приводятся в работе.

чатых кристаллических сланцев. В верхах толщи преобладают лейкократовые тонкополосчатые амфибол-слюдистые, гранат-амфибол-слюдистые и эпидот-слюдистые кристаллические сланцы, переслаивающиеся с горизонтами слюдистых (±гранат, ±амфибол, ±эпидот) кварцитов и кварцитовых сланцев.

Верхняя толща хавывенской серии обнажается на большей части Хавывенской возвышенности и приурочена к крыльям куполовидной структуры,

ядро которой сложено отложениями нижней толщи (рис. 2). По особенностям литологического состава верхнюю толщу можно разделить на две пачки: нижнюю – зеленых сланцев и верхнюю – кварцитов. Пачка зеленых сланцев мощностью около 450 м сложена переслаивающимися полосчатыми эпидотамфиболовыми (преобладают), фенгит-эпидот-амфиболовыми и хлорит-эпидот-амфиболовыми зелеными сланцами с подчиненным количеством прослоев полосчатых двуслюдяных (±гранат, ±эпидот, ±амфибол) кварцитов, доля которых постепенно возрастает к верхам пачки. Видимая мощность верхней кварцитовой пачки составляет около 150 м.

По всему разрезу верхней толщи отмечаются тела серпентинитов, серпентинизированных гарцбургитов, дунитов и ассоциирующих с ними габброидов мощностью от первых метров до 60–100 м (рис. 2). Наиболее мощные их тела перидотитов приурочены к границе пачек зеленых сланцев и кварцитов. Тесная пространственная ассоциация изученных метавулканитов с кварцитами, апогарцбургитовыми серпентинитами и габброидами в составе верхней толщи хавывенской серии позволяет рассматривать их в качестве метаморфизованного офиолитового комплекса [18–20, 28, 29].

ПЕТРОГРАФИЯ И МИНЕРАЛОГИЯ МЕТАМОРФИЧЕСКИХ ПОРОД

Кристаллические сланцы нижней толщи – порфиробластические породы, состоящие из порфиробласт граната, амфибола и биотита размером до 1–2 мм и более крупных (до 2–3 мм) таблитчатых кристаллов альбита и реже калиевого полевого шпата в тонко-или мелкозернистой основной массе из сочетающихся в различных количественных соотношениях альбита, кварца, калиевого полевого шпата, биотита, мусковит-фенгита, эпидота и амфибола. Бластопорфировая структура кристаллических сланцев отражает порфировую структуру исходных вулканогенных образований.

Состав минералов из основных разновидностей кристаллических сланцев приведен в табл. 1¹. Из таблицы видно, что плагиоклаз изученных пород представлен почти чистым альбитом, а калиевый полевой шпат содержит не более 3–5% альбитовой молекулы Гранаты, как и другие темноцветные минералы, характеризуются чрезвычайно высокой железистостью и прогрессивной зональностью кристаллов, свидетельствующей, что их формирование происходило на фоне повышения температуры при прогрессивном метаморфизме. Прогрессивный тип зональности кристаллов граната не под-

тверждает более ранние представления [30] о диафторической природе пород Хавывенской возвышенности, образовавшихся за счет низкотемпературного преобразования исходных гнейсов.

Амфибол кристаллических сланцев характеризуется синевато-зелеными, голубовато-зелеными окрасками и отвечает составу кальциевых амфиболов – актинолиту, ферроактинолиту, магнезиальной и железистой роговой обманке (по номенклатуре, [31]. В краевых зонах кристаллов наблюдается усиление голубоватой окраски за счет формирования оторочек из кальциево-натриевого амфибола типа винчита и барруазита.

Кварциты и кварцитовые сланцы нижней толщи – полосчатые породы, состоящие из кварца (40–60 объем. %), альбита (до 20–25%) и темноцветных минералов, среди которых преобладают эпидот, мусковит-фенгит, хлорит и биотит, а амфибол и гранат содержатся в резко подчиненных количествах. В гранатсодержащих кварцитовых сланцах и кварцитах диагностируется кальциево-натриевый амфибол–барруазит (табл. 1, обр. 1182).

В составе зеленых сланцев верхней толщи преобладают альбит и сине-зеленый амфибол, к которым в различных количественных соотношениях присоединяются эпидот, хлорит, мусковит-фенгит и рудные минералы. Амфибол составляет 30–50% объема пород, эпидот – 10–40%, альбит – 20–40%. Содержание остальных минералов: хлорита, мусковит-фенгита и рудного обычно не превышает 5–10%. Акцессорные минералы представлены апатитом, сфеном, магнетитом, титаномагнетитом, реже ильменитом. Зеленые сланцы обогащены сульфидами, среди которых преобладает пирит. Амфибол и альбит слагают как основную ткань пород, так и образуют порфиробласты размером до 1-3 мм, отражающие реликтовую порфировую структуру исходных вулканогенных образований.

Многие особенности минералов, отмеченные при характеристике кристаллических сланцев нижней толщи, типичны и для пород верхней толщи. Так, плагиоклазы зеленых сланцев и кварцитов являются чистыми альбитами и содержат не более 1% анортита. Сходный характер состава и аналогичная зональность характерна и для амфиболов, относящихся к актинолиту, винчиту и барруазиту (табл. 2). Для краевых частей кристаллов амфибола типична смена кальциевого амфибола ядра кальциево-натриевым краевой зоны. Все амфиболы зеленых сланцев обогащены марганцем, особенно актинолиты и барруазиты магнетит-альбит-барруазитэпидот-гранатовых пород, которые содержат около 7 мас. % MnO [19] и по концентрации петрогенных и рассеянных компонентов сходны с составом железо-марганцевых корок современных океанических бассейнов. Светлые слюды зеленых сланцев

¹ В статье приняты следующие символы: Ab – альбит, Alm – альмандин, Bi – биотит, Ep – эпидот, Gr – гранат, Gros – гроссуляр, Hb – амфибол, Mu-Phn – мусковит-фенгит, Or – калиевый полевой шпат, Py – пироп, Sp спессартин. С – центр, r – край кристалла. X_{Mg} = Mg/(Mg + Fe).

Компо-	Hv-9/3							Hv-13					
нент	<i>Gr</i> _c	Gr_r	Hb _c	Hb _r	Mu-Phn	Ер	Ab	<i>Gr</i> _c	Gr_r	Hb _c	Hb _r	Bi	Mu-Phn
SiO ₂	37.56	37.53	49.90	47.50	52.09	39.08	69.22	37.50	37.18	47.28	43.77	37.42	50.89
TiO ₂	0.00	0.00	0.01	0.12	0.06	0.03	0.00	0.19	0.05	0.25	0.20	1.66	0.37
Al ₂ O ₃	21.54	21.40	5.24	7.90	27.48	27.26	19.20	22.19	22.22	9.55	9.97	15.75	25.33
FeO	16.52	24.38	18.15	19.00	4.05	9.28	0.02	17.07	20.66	22.08	23.30	23.41	6.87
MnO	11.56	3.91	0.05	0.06	0.00	0.33	0.00	12.05	9.84	0.28	0.33	1.46	0.00
MgO	0.38	0.65	10.96	9.80	3.06	0.12	0.00	0.19	0.24	6.06 7.00	5.88	7.60	2.44
CaO Na O	12.60	11.89	10.53	10.40	0.00	21.65	0.00	12.53	11.39	7.90	9.81	0.14	0.00
Na_2O	0.00	0.00	1.05	1.80	0.00	0.00	10.69	0.00	0.00	4.20	2.75	0.00	0.00
	100.16	0.00 99.76	96.76	0.39 96.97	9.04	97 75	0.09	101 72	101 58	0.78 98.44	97.05	96 51	96.95
Сумма Хл	0.039	99.70 0.045	90.70 0.518	90.97 0.479	0 574	0.023	-	0.019	0.020	0 328	0 310	0 366	0 388
X Mg	-	-	-	_	_	-	0.000	-	-	-	-	-	-
Alm	36.7	54.5	_	_	_	_	_	37.4	45.3	_	_	_	_
Py	1.5	2.6	_	_	_	_	_	0.7	0.9	_	_	_	_
Sp	26.0	8.8	_	_	_	_	_	26.7	21.8	_	_	_	_
Gros	35.8	34.1	-	-	-	-	_	35.2	32.0	-	_	_	_
$a_{\rm A1}^{\rm VI}$	_	-	-	-	25.1	-	-	-	-	-	-	-	31.2
a _{Si}	_	_	_	_	13.7	-	_	_	_	-	_	_	14.5
a _K	-	-	-	-	0	-	-	-	-	-	-	-	0
Амфи- бол*	_	-	Act-Hb	Act-Hb	-	-	-	-	-	Fer-Bar	Fer- Eden	_	-
Ком-	Hv	-13		Hv-75/3					1186/8				
1 XOM		10			111	1515					1100/0		
понент	Ep	Ab	<i>Gr</i> _c	<i>Gr_r</i>	Hb _c	Hb_r	Mu-Phn	Ер	Ab	<i>Gr</i> _c	Gr_r	Hb	Mu-Phn
понент SiO ₂	<i>Ep</i> 37.88	<i>Ab</i> 64.35	<i>Gr_c</i> 37.39	<i>Gr_r</i> 37.48	<i>Hb_c</i> 51.93	<i>Hb_r</i> 49.73	Mu-Phn 49.95	<i>Ep</i> 39.72	<i>Ab</i> 68.88	<i>Gr_c</i> 37.49	<i>Gr_r</i> 37.53	<i>Hb</i> 53.04	<i>Mu-Phn</i> 50.21
понент SiO ₂ TiO ₂	<i>Ep</i> 37.88 0.00	Ab 64.35 0.00	<i>Gr_c</i> 37.39 0.11	<i>Gr_r</i> 37.48 0.11	<i>Hb_c</i> 51.93 0.00	<i>Hb_r</i> 49.73 0.03	Mu-Phn 49.95 0.07	<i>Ep</i> 39.72 0.00	Ab 68.88 0.00	<i>Gr_c</i> 37.49 0.11	<i>Gr_r</i> 37.53 0.10	Hb 53.04 0.02	Mu-Phn 50.21 0.16
понент SiO ₂ TiO ₂ Al ₂ O ₃	<i>Ep</i> 37.88 0.00 22.27	Ab 64.35 0.00 20.72	<i>Gr</i> _c 37.39 0.11 22.36	<i>Gr_r</i> 37.48 0.11 21.93	Hb _c 51.93 0.00 2.08	<i>Hb_r</i> 49.73 0.03 5.08	Mu-Phn 49.95 0.07 28.05	<i>Ep</i> 39.72 0.00 33.11	Ab 68.88 0.00 19.79	<i>Gr_c</i> 37.49 0.11 21.41	<i>Gr_r</i> 37.53 0.10 21.62	Hb 53.04 0.02 3.83	Mu-Phn 50.21 0.16 26.51
$\frac{\text{IIOM}}{\text{IIOHEHT}}$ $\frac{\text{SiO}_2}{\text{TiO}_2}$ $\frac{\text{Al}_2\text{O}_3}{\text{FeO}}$	<i>Ep</i> 37.88 0.00 22.27 13.97	Ab 64.35 0.00 20.72 0.32	<i>Gr_c</i> 37.39 0.11 22.36 16.38	<i>Gr_r</i> 37.48 0.11 21.93 23.97	$ Hb_c 51.93 0.00 2.08 21.49 $	Hb _r 49.73 0.03 5.08 20.70	Mu-Phn 49.95 0.07 28.05 4.16	<i>Ep</i> 39.72 0.00 33.11 1.20	<i>Ab</i> 68.88 0.00 19.79 0.19	<i>Gr_c</i> 37.49 0.11 21.41 12.18	$ Gr_r 37.53 0.10 21.62 20.84 $	Hb 53.04 0.02 3.83 15.63	Mu-Phn 50.21 0.16 26.51 3.69
NOM NOM NO NO NO NO	<i>Ep</i> 37.88 0.00 22.27 13.97 0.23	Ab 64.35 0.00 20.72 0.32 0.00	<i>Gr_c</i> 37.39 0.11 22.36 16.38 7.32	<i>Gr_r</i> 37.48 0.11 21.93 23.97 2.07	$ Hb_c 110 Hb_c 51.93 0.00 2.08 21.49 0.03$	Hb _r 49.73 0.03 5.08 20.70 0.03	Mu-Phn 49.95 0.07 28.05 4.16 0.00	<i>Ep</i> 39.72 0.00 33.11 1.20 0.00	Ab 68.88 0.00 19.79 0.19 0.00	<i>Gr_c</i> 37.49 0.11 21.41 12.18 15.24	<i>Gr_r</i> 37.53 0.10 21.62 20.84 6.92	Hb 53.04 0.02 3.83 15.63 0.23	Mu-Phn 50.21 0.16 26.51 3.69 0.00
ROM IIIOHEHT SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO	<i>Ep</i> 37.88 0.00 22.27 13.97 0.23 0.01	Ab 64.35 0.00 20.72 0.32 0.00 0.00 0.00	<i>Gr_c</i> 37.39 0.11 22.36 16.38 7.32 0.20	<i>Gr</i> _r 37.48 0.11 21.93 23.97 2.07 0.44	$ Hb_c 110 Hb_c 51.93 0.00 2.08 21.49 0.03 9.90 11.64 $	Hb _r 49.73 0.03 5.08 20.70 0.03 9.27	Mu-Phn 49.95 0.07 28.05 4.16 0.00 2.39 2.39	<i>Ep</i> 39.72 0.00 33.11 1.20 0.00 0.04	Ab 68.88 0.00 19.79 0.19 0.00 0.00	<i>Gr_c</i> 37.49 0.11 21.41 12.18 15.24 0.21	<i>Gr_r</i> 37.53 0.10 21.62 20.84 6.92 0.49	Hb 53.04 0.02 3.83 15.63 0.23 12.35	Mu-Phn 50.21 0.16 26.51 3.69 0.00 2.81 0.84
ROM IDHENT SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO	<i>Ep</i> 37.88 0.00 22.27 13.97 0.23 0.01 22.60 0.00	Ab 64.35 0.00 20.72 0.32 0.00 0.00 0.00 1.1 02	<i>Gr_c</i> 37.39 0.11 22.36 16.38 7.32 0.20 16.28 0.00	<i>Gr</i> _r 37.48 0.11 21.93 23.97 2.07 0.44 14.13 0.00	$ Hb_c 51.93 0.00 2.08 21.49 0.03 9.90 11.64 0.02 $	Hb _r 49.73 0.03 5.08 20.70 0.03 9.27 11.17	Mu-Phn 49.95 0.07 28.05 4.16 0.00 2.39 0.00 0.00	<i>Ep</i> 39.72 0.00 33.11 1.20 0.00 0.04 23.80 0.00	Ab 68.88 0.00 19.79 0.19 0.00 0.00 0.28 11.62	<i>Gr</i> _c 37.49 0.11 21.41 12.18 15.24 0.21 13.00	Grr 37.53 0.10 21.62 20.84 6.92 0.49 12.61	Hb 53.04 0.02 3.83 15.63 0.23 12.35 10.25 1.40	Mu-Phn 50.21 0.16 26.51 3.69 0.00 2.81 0.04
ROM IIIOA IIIO2 Al2O3 FeO MnO MgO CaO Na2O K O	<i>Ep</i> 37.88 0.00 22.27 13.97 0.23 0.01 22.60 0.00	Ab 64.35 0.00 20.72 0.32 0.00 0.00 11.92 0.00	<i>Gr_c</i> 37.39 0.11 22.36 16.38 7.32 0.20 16.28 0.00 0.00	<i>Gr</i> _r 37.48 0.11 21.93 23.97 2.07 0.44 14.13 0.00 0.00	$\begin{array}{c} Hb_c\\ \hline Hb_c\\ 51.93\\ 0.00\\ 2.08\\ 21.49\\ 0.03\\ 9.90\\ 11.64\\ 0.02\\ 0.13\\ \end{array}$	$\begin{array}{r} Hb_r \\ 49.73 \\ 0.03 \\ 5.08 \\ 20.70 \\ 0.03 \\ 9.27 \\ 11.17 \\ 0.70 \\ 0.34 \end{array}$	Mu-Phn 49.95 0.07 28.05 4.16 0.00 2.39 0.00 0.00 10.69	<i>Ep</i> 39.72 0.00 33.11 1.20 0.00 0.04 23.80 0.00 0.00	Ab 68.88 0.00 19.79 0.19 0.00 0.00 0.28 11.63 0.05	$\begin{array}{c} Gr_c \\ 37.49 \\ 0.11 \\ 21.41 \\ 12.18 \\ 15.24 \\ 0.21 \\ 13.00 \\ 0.00 \\ 0.00 \end{array}$	$\begin{array}{c} Gr_r \\ \hline 37.53 \\ 0.10 \\ 21.62 \\ 20.84 \\ 6.92 \\ 0.49 \\ 12.61 \\ 0.00 \\ 0.00 \end{array}$	Hb 53.04 0.02 3.83 15.63 0.23 12.35 10.25 1.40 0.05	Mu-Phn 50.21 0.16 26.51 3.69 0.00 2.81 0.04 0.91 10.47
TiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	<i>Ep</i> 37.88 0.00 22.27 13.97 0.23 0.01 22.60 0.00 0.00 96.96	Ab 64.35 0.00 20.72 0.32 0.00 0.00 11.92 0.09 100.42	<i>Gr</i> _c 37.39 0.11 22.36 16.38 7.32 0.20 16.28 0.00 0.00 100.04	<i>Gr</i> _r 37.48 0.11 21.93 23.97 2.07 0.44 14.13 0.00 0.00 100 13	$\begin{array}{c} Hb_c\\ 51.93\\ 0.00\\ 2.08\\ 21.49\\ 0.03\\ 9.90\\ 11.64\\ 0.02\\ 0.13\\ 97.22\\ \end{array}$	Hb _r 49.73 0.03 5.08 20.70 0.03 9.27 11.17 0.70 0.34 97.05	Mu-Phn 49.95 0.07 28.05 4.16 0.00 2.39 0.00 0.00 10.69 95 31	<i>Ep</i> 39.72 0.00 33.11 1.20 0.00 0.04 23.80 0.00 0.00 97.87	<i>Ab</i> 68.88 0.00 19.79 0.19 0.00 0.00 0.28 11.63 0.05	<i>Gr_c</i> 37.49 0.11 21.41 12.18 15.24 0.21 13.00 0.00 0.00 99.64	$\begin{array}{c} Gr_r \\ \hline 37.53 \\ 0.10 \\ 21.62 \\ 20.84 \\ 6.92 \\ 0.49 \\ 12.61 \\ 0.00 \\ 0.00 \\ 100.11 \end{array}$	Hb 53.04 0.02 3.83 15.63 0.23 12.35 10.25 1.40 0.05 96.80	Mu-Phn 50.21 0.16 26.51 3.69 0.00 2.81 0.04 0.91 10.47 94.80
понент SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Сумма	<i>Ep</i> 37.88 0.00 22.27 13.97 0.23 0.01 22.60 0.00 0.00 96.96	Ab 64.35 0.00 20.72 0.32 0.00 0.00 0.00 0.00 0.02 11.92 0.09 100.42	Gr _c 37.39 0.11 22.36 16.38 7.32 0.20 16.28 0.00 0.00 100.04 0.015	Gr _r 37.48 0.11 21.93 23.97 2.07 0.44 14.13 0.00 100.13 0.032	$\begin{array}{c} Hb_c \\ 51.93 \\ 0.00 \\ 2.08 \\ 21.49 \\ 0.03 \\ 9.90 \\ 11.64 \\ 0.02 \\ 0.13 \\ 97.22 \\ 0.451 \end{array}$	$\begin{array}{r} Hb_r \\ 49.73 \\ 0.03 \\ 5.08 \\ 20.70 \\ 0.03 \\ 9.27 \\ 11.17 \\ 0.70 \\ 0.34 \\ 97.05 \\ 0.444 \end{array}$	Mu-Phn 49.95 0.07 28.05 4.16 0.00 2.39 0.00 0.00 10.69 95.31 0.506	<i>Ep</i> 39.72 0.00 33.11 1.20 0.00 0.04 23.80 0.00 0.00 97.87	Ab 68.88 0.00 19.79 0.19 0.00 0.00 0.28 11.63 0.05 100.82	$\begin{array}{c} Gr_c \\ 37.49 \\ 0.11 \\ 21.41 \\ 12.18 \\ 15.24 \\ 0.21 \\ 13.00 \\ 0.00 \\ 0.00 \\ 99.64 \\ 0.030 \end{array}$	$\begin{array}{c} Gr_r \\ \hline 37.53 \\ 0.10 \\ 21.62 \\ 20.84 \\ 6.92 \\ 0.49 \\ 12.61 \\ 0.00 \\ 0.00 \\ 100.11 \\ 0.040 \end{array}$	Hb 53.04 0.02 3.83 15.63 0.23 12.35 10.25 1.40 0.05 96.80 0.585	Mu-Phn 50.21 0.16 26.51 3.69 0.00 2.81 0.04 0.91 10.47 94.80 0.576
понент SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Сумма X _{Mg}	<i>Ep</i> 37.88 0.00 22.27 13.97 0.23 0.01 22.60 0.00 0.00 96.96 -	Ab 64.35 0.00 20.72 0.32 0.00 0.00 0.02 11.92 0.09 100.42 - 0.014	Gr _c 37.39 0.11 22.36 16.38 7.32 0.20 16.28 0.00 0.00 100.04 0.015	Gr _r 37.48 0.11 21.93 23.97 2.07 0.44 14.13 0.00 0.00 100.13 0.032	$\begin{array}{r} Hb_c\\ 51.93\\ 0.00\\ 2.08\\ 21.49\\ 0.03\\ 9.90\\ 11.64\\ 0.02\\ 0.13\\ 97.22\\ 0.451\\ -\end{array}$	Hb _r 49.73 0.03 5.08 20.70 0.03 9.27 11.17 0.70 0.34 97.05 0.444	Mu-Phn 49.95 0.07 28.05 4.16 0.00 2.39 0.00 0.00 10.69 95.31 0.506	<i>Ep</i> 39.72 0.00 33.11 1.20 0.00 0.04 23.80 0.00 97.87 -	Ab 68.88 0.00 19.79 0.19 0.00 0.00 0.28 11.63 0.05 100.82 - 0.012	$\begin{array}{c} Gr_c \\ 37.49 \\ 0.11 \\ 21.41 \\ 12.18 \\ 15.24 \\ 0.21 \\ 13.00 \\ 0.00 \\ 0.00 \\ 99.64 \\ 0.030 \\ - \end{array}$	Gr _r 37.53 0.10 21.62 20.84 6.92 0.49 12.61 0.00 100.11 0.040	Hb 53.04 0.02 3.83 15.63 0.23 12.35 10.25 1.40 0.05 96.80 0.585	Mu-Phn 50.21 0.16 26.51 3.69 0.00 2.81 0.04 0.91 10.47 94.80 0.576
понент SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Сумма X_{Mg} X_{An} Alm	<i>Ep</i> 37.88 0.00 22.27 13.97 0.23 0.01 22.60 0.00 96.96 - - -	Ab 64.35 0.00 20.72 0.32 0.00 0.02 11.92 0.09 100.42 - 0.014	Gr _c 37.39 0.11 22.36 16.38 7.32 0.20 16.28 0.00 0.00 100.04 0.015 - 45.1	Gr, 37.48 0.11 21.93 23.97 2.07 0.44 14.13 0.00 100.13 0.032 - 53.3	$\begin{array}{r} Hb_c \\ 51.93 \\ 0.00 \\ 2.08 \\ 21.49 \\ 0.03 \\ 9.90 \\ 11.64 \\ 0.02 \\ 0.13 \\ 97.22 \\ 0.451 \\ - \\ - \\ - \\ - \end{array}$	Hb _r 49.73 0.03 5.08 20.70 0.03 9.27 11.17 0.70 0.34 97.05 0.444 - -	Mu-Phn 49.95 0.07 28.05 4.16 0.00 2.39 0.00 0.00 10.69 95.31 0.506	<i>Ep</i> 39.72 0.00 33.11 1.20 0.00 0.04 23.80 0.00 97.87 - -	Ab 68.88 0.00 19.79 0.19 0.00 0.00 0.28 11.63 0.05 100.82 - 0.012 -	$\begin{array}{c} Gr_c \\ 37.49 \\ 0.11 \\ 21.41 \\ 12.18 \\ 15.24 \\ 0.21 \\ 13.00 \\ 0.00 \\ 0.00 \\ 99.64 \\ 0.030 \\ - \\ 27.3 \end{array}$	$\begin{array}{r} Gr_r \\ \hline 37.53 \\ 0.10 \\ 21.62 \\ 20.84 \\ 6.92 \\ 0.49 \\ 12.61 \\ 0.00 \\ 0.00 \\ 100.11 \\ 0.040 \\ - \\ 46.4 \end{array}$	Hb 53.04 0.02 3.83 15.63 0.23 12.35 10.25 1.40 0.05 96.80 0.585 -	Mu-Phn 50.21 0.16 26.51 3.69 0.00 2.81 0.04 0.91 10.47 94.80 0.576
понент SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Сумма X_{Mg} X_{An} Alm Py	<i>Ep</i> 37.88 0.00 22.27 13.97 0.23 0.01 22.60 0.00 96.96 - - - -	Ab 64.35 0.00 20.72 0.32 0.00 0.00 0.00 0.02 11.92 0.09 100.42 - 0.014	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Gr _r 37.48 0.11 21.93 23.97 2.07 0.44 14.13 0.00 100.13 0.032 - 53.3 1.7	$\begin{array}{c} Hb_c \\ 51.93 \\ 0.00 \\ 2.08 \\ 21.49 \\ 0.03 \\ 9.90 \\ 11.64 \\ 0.02 \\ 0.13 \\ 97.22 \\ 0.451 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	Hb _r 49.73 0.03 5.08 20.70 0.03 9.27 11.17 0.70 0.34 97.05 0.444 - -	Mu-Phn 49.95 0.07 28.05 4.16 0.00 2.39 0.00 10.69 95.31 0.506 - - -	<i>Ep</i> 39.72 0.00 33.11 1.20 0.00 0.04 23.80 0.00 97.87 - - - -	Ab 68.88 0.00 19.79 0.19 0.00 0.00 0.28 11.63 0.05 100.82 - 0.012 - - -	$\begin{array}{c} Gr_c \\ 37.49 \\ 0.11 \\ 21.41 \\ 12.18 \\ 15.24 \\ 0.21 \\ 13.00 \\ 0.00 \\ 0.00 \\ 99.64 \\ 0.030 \\ - \\ 27.3 \\ 0.8 \end{array}$	$\begin{array}{c} Gr_r \\ \hline 37.53 \\ 0.10 \\ 21.62 \\ 20.84 \\ 6.92 \\ 0.49 \\ 12.61 \\ 0.00 \\ 0.00 \\ 100.11 \\ 0.040 \\ - \\ 46.4 \\ 2.0 \\ \end{array}$	Hb 53.04 0.02 3.83 15.63 0.23 12.35 10.25 1.40 0.05 96.80 0.585 - - -	Mu-Phn 50.21 0.16 26.51 3.69 0.00 2.81 0.04 0.91 10.47 94.80 0.576 - - - -
понент SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O CaO Na ₂ O Cymma X_{An} Alm Py Sp	<i>Ep</i> 37.88 0.00 22.27 13.97 0.23 0.01 22.60 0.00 96.96 - - - - - -	Ab 64.35 0.00 20.72 0.32 0.00 0.02 11.92 0.09 100.42 - 0.014 - - - - - - -	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Gr, 37.48 0.11 21.93 23.97 2.07 0.44 14.13 0.00 100.13 0.032 - 53.3 1.7 4.7	$\begin{array}{r} Hb_c \\ 51.93 \\ 0.00 \\ 2.08 \\ 21.49 \\ 0.03 \\ 9.90 \\ 11.64 \\ 0.02 \\ 0.13 \\ 97.22 \\ 0.451 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	Hb _r 49.73 0.03 5.08 20.70 0.03 9.27 11.17 0.70 0.34 97.05 0.444 - - - - -	Mu-Phn 49.95 0.07 28.05 4.16 0.00 2.39 0.00 0.00 10.69 95.31 0.506 - - - - - -	<i>Ep</i> 39.72 0.00 33.11 1.20 0.00 0.04 23.80 0.00 97.87 - - - - - - - - - -	Ab 68.88 0.00 19.79 0.19 0.00 0.28 11.63 0.05 100.82 - 0.012 - - - - -	$\begin{array}{c} Gr_c \\ 37.49 \\ 0.11 \\ 21.41 \\ 12.18 \\ 15.24 \\ 0.21 \\ 13.00 \\ 0.00 \\ 0.00 \\ 99.64 \\ 0.030 \\ - \\ 27.3 \\ 0.8 \\ 34.6 \\ \end{array}$	$\begin{array}{r} Gr_r \\ \hline Gr_r \\ 37.53 \\ 0.10 \\ 21.62 \\ 20.84 \\ 6.92 \\ 0.49 \\ 12.61 \\ 0.00 \\ 100.11 \\ 0.040 \\ - \\ 46.4 \\ 2.0 \\ 15.6 \\ \end{array}$	Hb 53.04 0.02 3.83 15.63 0.23 12.35 10.25 1.40 0.05 96.80 0.585 - - - -	Mu-Phn 50.21 0.16 26.51 3.69 0.00 2.81 0.04 0.91 10.47 94.80 0.576 -
понент SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cумма X_{An} Alm Py Sp Gros	<i>Ep</i> 37.88 0.00 22.27 13.97 0.23 0.01 22.60 0.00 96.96 - - - - - - - - - -	Ab 64.35 0.00 20.72 0.32 0.00 0.02 11.92 0.09 100.42 - 0.014 - - - - - - - - - - - - - - -	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} Hb_c \\ 51.93 \\ 0.00 \\ 2.08 \\ 21.49 \\ 0.03 \\ 9.90 \\ 11.64 \\ 0.02 \\ 0.13 \\ 97.22 \\ 0.451 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	Hb _r 49.73 0.03 5.08 20.70 0.03 9.27 11.17 0.70 0.34 97.05 0.444 - - - - - - -	Mu-Phn 49.95 0.07 28.05 4.16 0.00 2.39 0.00 0.00 10.69 95.31 0.506 - - - - - - -	<i>Ep</i> 39.72 0.00 33.11 1.20 0.00 0.04 23.80 0.00 97.87 - - - - - - - - - - - -	Ab 68.88 0.00 19.79 0.19 0.00 0.00 0.28 11.63 0.05 100.82 - 0.012 - - - - - - - -	$\begin{array}{c} Gr_c \\ 37.49 \\ 0.11 \\ 21.41 \\ 12.18 \\ 15.24 \\ 0.21 \\ 13.00 \\ 0.00 \\ 0.00 \\ 99.64 \\ 0.030 \\ - \\ 27.3 \\ 0.8 \\ 34.6 \\ 37.3 \\ \end{array}$	$\begin{array}{r} Gr_r \\ \hline 37.53 \\ 0.10 \\ 21.62 \\ 20.84 \\ 6.92 \\ 0.49 \\ 12.61 \\ 0.00 \\ 0.00 \\ 100.11 \\ 0.040 \\ - \\ 46.4 \\ 2.0 \\ 15.6 \\ 36.0 \\ \end{array}$	Hb 53.04 0.02 3.83 15.63 0.23 12.35 10.25 1.40 0.05 96.80 0.585 - - - - - - -	Mu-Phn 50.21 0.16 26.51 3.69 0.00 2.81 0.04 0.91 10.47 94.80 0.576 -
понент SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cyмма X_{Mg} X_{An} Alm Py Sp Gros a_{A1}^{VI}	<i>Ep</i> 37.88 0.00 22.27 13.97 0.23 0.01 22.60 0.00 96.96 - - - - - - - - - - - - -	Ab 64.35 0.00 20.72 0.32 0.00 0.02 11.92 0.09 100.42 - 0.014 - - - - - - - - -	Grc 37.39 0.11 22.36 16.38 7.32 0.20 16.28 0.00 0.00 100.04 0.015 - 45.1 0.7 14.2 40.0	Gr, 37.48 0.11 21.93 23.97 2.07 0.44 14.13 0.00 100.13 0.032 - 53.3 1.7 4.7 40.3	$\begin{array}{r} Hb_c \\ 51.93 \\ 0.00 \\ 2.08 \\ 21.49 \\ 0.03 \\ 9.90 \\ 11.64 \\ 0.02 \\ 0.13 \\ 97.22 \\ 0.451 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	Hb _r 49.73 0.03 5.08 20.70 0.03 9.27 11.17 0.70 0.34 97.05 0.444 - - - - - - -	Mu-Phn 49.95 0.07 28.05 4.16 0.00 2.39 0.00 0.00 10.69 95.31 0.506 - - - 23.7	<i>Ep</i> 39.72 0.00 33.11 1.20 0.00 0.04 23.80 0.00 97.87 - - - - - - - - - - - - -	Ab 68.88 0.00 19.79 0.19 0.00 0.00 0.28 11.63 0.05 100.82 - 0.012 - - - - - - - -	$\begin{array}{c} Gr_c \\ 37.49 \\ 0.11 \\ 21.41 \\ 12.18 \\ 15.24 \\ 0.21 \\ 13.00 \\ 0.00 \\ 0.00 \\ 99.64 \\ 0.030 \\ - \\ 27.3 \\ 0.8 \\ 34.6 \\ 37.3 \\ - \end{array}$	$\begin{array}{r} Gr_r \\ \hline Gr_r \\ 37.53 \\ 0.10 \\ 21.62 \\ 20.84 \\ 6.92 \\ 0.49 \\ 12.61 \\ 0.00 \\ 0.00 \\ 100.11 \\ 0.040 \\ - \\ 46.4 \\ 2.0 \\ 15.6 \\ 36.0 \\ - \end{array}$	Hb 53.04 0.02 3.83 15.63 0.23 12.35 10.25 1.40 0.05 96.80 0.585 - - - - - - - - -	Mu-Phn 50.21 0.16 26.51 3.69 0.00 2.81 0.04 0.91 10.47 94.80 0.576 - - 24.9
In the second state is a second state in the second state is a se	<i>Ep</i> 37.88 0.00 22.27 13.97 0.23 0.01 22.60 0.00 96.96 - - - - - - - - - - - -	Ab 64.35 0.00 20.72 0.32 0.00 0.02 11.92 0.09 100.42 - 0.014 -	Grc 37.39 0.11 22.36 16.38 7.32 0.20 16.28 0.00 100.04 0.015 - 45.1 0.7 14.2 40.0 -	Gr, 37.48 0.11 21.93 23.97 2.07 0.44 14.13 0.00 100.13 0.032 - 53.3 1.7 4.7 40.3 - -	$\begin{array}{r} Hb_c \\ 51.93 \\ 0.00 \\ 2.08 \\ 21.49 \\ 0.03 \\ 9.90 \\ 11.64 \\ 0.02 \\ 0.13 \\ 97.22 \\ 0.451 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	Hbr 49.73 0.03 5.08 20.70 0.03 9.27 11.17 0.70 0.34 97.05 0.444 - <tr td=""></tr>	Mu-Phn 49.95 0.07 28.05 4.16 0.00 2.39 0.00 0.00 10.69 95.31 0.506 - - 23.7 16.0	<i>Ep</i> 39.72 0.00 33.11 1.20 0.00 0.04 23.80 0.00 97.87	Ab 68.88 0.00 19.79 0.19 0.00 0.28 11.63 0.05 100.82 - 0.012 - - - - - - - - - - - - -	$\begin{array}{c} Gr_c \\ 37.49 \\ 0.11 \\ 21.41 \\ 12.18 \\ 15.24 \\ 0.21 \\ 13.00 \\ 0.00 \\ 0.00 \\ 99.64 \\ 0.030 \\ - \\ 27.3 \\ 0.8 \\ 34.6 \\ 37.3 \\ - \\ - \\ - \\ - \\ \end{array}$	$\begin{array}{c} Gr_r \\ 37.53 \\ 0.10 \\ 21.62 \\ 20.84 \\ 6.92 \\ 0.49 \\ 12.61 \\ 0.00 \\ 100.11 \\ 0.040 \\ - \\ 46.4 \\ 2.0 \\ 15.6 \\ 36.0 \\ - \\ - \\ - \end{array}$	Hb 53.04 0.02 3.83 15.63 0.23 12.35 10.25 1.40 0.05 96.80 0.585 - - - - - - - - - - -	Mu-Phn 50.21 0.16 26.51 3.69 0.00 2.81 0.04 0.91 10.47 94.80 0.576 - - 24.9 15.0
понент SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cyмма X_{An} Alm Py Sp Gros a_{A1}^{VI} a_{Si} a_{K}	<i>Ep</i> 37.88 0.00 22.27 13.97 0.23 0.01 22.60 0.00 96.96 - - - - - - - - - - - - - - - -	Ab 64.35 0.00 20.72 0.32 0.00 0.02 11.92 0.09 100.42 - 0.014 -	Grc 37.39 0.11 22.36 16.38 7.32 0.20 16.28 0.00 0.00 100.04 0.015 - 45.1 0.7 14.2 40.0 - -	Gr, 37.48 0.11 21.93 23.97 2.07 0.44 14.13 0.00 100.13 0.032 - 53.3 1.7 4.7 40.3 - - -	$\begin{array}{r} Hb_c \\ 51.93 \\ 0.00 \\ 2.08 \\ 21.49 \\ 0.03 \\ 9.90 \\ 11.64 \\ 0.02 \\ 0.13 \\ 97.22 \\ 0.451 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	Hb _r 49.73 0.03 5.08 20.70 0.03 9.27 11.17 0.70 0.34 97.05 0.444 -	Mu-Phn 49.95 0.07 28.05 4.16 0.00 2.39 0.00 0.00 10.69 95.31 0.506 - - 23.7 16.0 0	<i>Ep</i> 39.72 0.00 33.11 1.20 0.00 0.04 23.80 0.00 97.87	Ab 68.88 0.00 19.79 0.19 0.00 0.00 0.28 11.63 0.05 100.82 - 0.012 - - - - - - - - - - - - -	$\begin{array}{c} Gr_c \\ 37.49 \\ 0.11 \\ 21.41 \\ 12.18 \\ 15.24 \\ 0.21 \\ 13.00 \\ 0.00 \\ 0.00 \\ 99.64 \\ 0.030 \\ - \\ 27.3 \\ 0.8 \\ 34.6 \\ 37.3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ \end{array}$	$\begin{array}{c} Gr_r \\ \hline 37.53 \\ 0.10 \\ 21.62 \\ 20.84 \\ 6.92 \\ 0.49 \\ 12.61 \\ 0.00 \\ 100.11 \\ 0.040 \\ - \\ 46.4 \\ 2.0 \\ 15.6 \\ 36.0 \\ - \\ - \\ - \\ - \\ - \\ - \\ \end{array}$	Hb 53.04 0.02 3.83 15.63 0.23 12.35 10.25 1.40 0.05 96.80 0.585 - - - - - - - - - - - -	Mu-Phn 50.21 0.16 26.51 3.69 0.00 2.81 0.04 0.91 10.47 94.80 0.576 - - 24.9 15.0 11.8

Таблица 1. Представительные микрозондовые анализы минералов из кристаллических сланцев нижней толщи хавывенской серии

Таблица 1. Окончание

Ком-	118	1186/8					Hv-9/1				1185/4			
понент	Ер	Ab	<i>Gr</i> _c	Gr_r	Hb _c	Hb_r	Mu-Phn	Ер	Ab	Bi	Mu-Phn	Ер	Or	
SiO ₂	37.97	67.85	37.43	37.64	49.18	48.99	50.44	38.62	68.90	37.39	49.01	36.81	64.51	
TiO ₂	0.06	0.00	0.07	0.03	0.03	0.01	0.11	0.00	0.00	1.23	0.21	0.00	0.00	
Al ₂ O ₃	27.25	19.64	21.86	21.32	8.02	6.55	27.02	27.89	19.73	13.80	22.08	20.08	18.56	
FeO	9.12	0.02	18.48	22.06	19.45	19.49	3.69	7.90	0.10	25.24	9.24	15.70	0.08	
MnO	0.38	0.00	10.40	5.78	0.05	0.05	0.00	0.04	0.00	0.44	0.06	0.30	0.00	
MgO	0.01	0.00	0.50	0.61	9.03	9.62	3.14	0.01	0.00	8.20	2.67	0.02	0.00	
CaO	22.43	0.18	12.63	12.79	9.77	10.26	0.00	23.51	0.00	0.00	0.00	21.40	0.00	
Na ₂ O	0.00	11.73	0.00	0.00	2.76	1.69	0.22	0.00	10.98	0.00	0.00	0.00	0.50	
K ₂ O	0.00	0.09	0.00	0.00	0.33	0.30	11.71	0.00	0.06	9.45	8.92	0.00	15.14	
Сумма	97.22	99.51	101.37	100.23	98.62	96.96	96.33	97.97	99.77	95.75	92.19	94.31	98.79	
X _{Mg}	-	-	0.046	0.047	0.453	0.468	0.602	-	-	0.367	0.340	0.002	-	
X_{An}	-	0.008	-	-	-	-	-	-	0.000	-	-	-	-	
Alm	_	-	40.1	48.6	-	-	-	-	-	-	-	-	-	
Py	_	-	1.9	2.4	-	-	-	-	-	-	-	-	-	
Sp	-	-	22.9	12.9	-	-	-	-	-	-	-	-	-	
Gros	-	-	35.1	36.1	-	-	_	-	-	-	_	-	-	
$a_{\rm A1}^{\rm VI}$	_	-	_	_	_	_	25.7	-	-	-	38.9	-	-	
a _{Si}	_	-	-	-	-	-	15.6	-	-	-	13.0	-	-	
a _K	-	-	-	-	-	-	2.8	-	-	-	0	-	-	
Амфи- бол*	-	-	_	-	F-Act- Hb	F-Act- Hb	-	-	-	-	-	-	-	
Ком-	1185/4		118	6/4				1182						
понент	Ab	Bi	Mu-Phn	Or	Ab	Gr_c	Gr_r	Hb	Bi	Mu-Phn	Ер	Ab		
SiO ₂	68.55	37.04	49.53	64.31	68.24	37.32	37.62	48.58	37.98	47.87	37.13	68.59		
TiO ₂	0.00	0.94	0.25	0.15	0.00	0.11	0.11	0.11	1.35	0.17	0.03	0.00		
Al ₂ O ₃	19.39	13.37	23.20	18.31	19.41	21.43	21.14	6 91	14 33	25.61	21 07	10 12		
FeO	0 0 4							0.71	14.55	25.01	21.97	19.13		
	0.04	24.65	6.40	0.37	0.05	11.73	12.14	20.74	20.45	6.991	3.43	0.12		
MnO	$\begin{array}{c} 0.04 \\ 0.00 \end{array}$	24.65 0.39	6.40 0.05	0.37 0.00	$\begin{array}{c} 0.05\\ 0.00\end{array}$	11.73 16.38	12.14 15.15	20.74 0.62	20.45 0.44	6.991 0.00	3.43 0.37	0.12 0.00		
MnO MgO	0.04 0.00 0.00	24.65 0.39 8.52	6.40 0.05 2.62	0.37 0.00 0.00	0.05 0.00 0.00	11.73 16.38 0.08	12.14 15.15 0.07	0.91 20.74 0.62 9.72	20.45 0.44 9.95	6.991 0.00 2.66	3.43 0.37 0.00	0.12 0.00 0.00		
MnO MgO CaO	$\begin{array}{c} 0.04 \\ 0.00 \\ 0.00 \\ 0.03 \end{array}$	24.65 0.39 8.52 0.04	6.40 0.05 2.62 0.00	0.37 0.00 0.00 0.00	0.05 0.00 0.00 0.00	11.73 16.38 0.08 13.07	12.14 15.15 0.07 13.76	20.74 0.62 9.72 7.86	20.45 0.44 9.95 0.17	6.991 0.00 2.66 0.02	3.43 0.37 0.00 22.47	0.12 0.00 0.00 0.00		
MnO MgO CaO Na ₂ O	$\begin{array}{c} 0.04 \\ 0.00 \\ 0.00 \\ 0.03 \\ 11.68 \\ 0.02 \end{array}$	24.65 0.39 8.52 0.04 0.03	6.40 0.05 2.62 0.00 0.00	0.37 0.00 0.00 0.00 0.39	$\begin{array}{c} 0.05 \\ 0.00 \\ 0.00 \\ 0.00 \\ 11.89 \\ 0.14 \end{array}$	11.73 16.38 0.08 13.07 0.00	12.14 15.15 0.07 13.76 0.00	20.74 0.62 9.72 7.86 3.69	20.45 0.44 9.95 0.17 0.05	23.01 6.991 0.00 2.66 0.02 0.07	3.43 0.37 0.00 22.47 0.00	$ \begin{array}{c} 19.13 \\ 0.12 \\ 0.00 \\ 0.00 \\ 0.00 \\ 11.31 \\ 0.00 \end{array} $		
MnO MgO CaO Na ₂ O K ₂ O	$\begin{array}{c} 0.04 \\ 0.00 \\ 0.00 \\ 0.03 \\ 11.68 \\ 0.08 \\ 00.77 \end{array}$	24.65 0.39 8.52 0.04 0.03 9.08	$\begin{array}{c} 6.40 \\ 0.05 \\ 2.62 \\ 0.00 \\ 0.00 \\ 9.34 \\ 01.20 \end{array}$	$\begin{array}{c} 0.37 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.39 \\ 15.60 \\ 00.12 \end{array}$	$\begin{array}{c} 0.05 \\ 0.00 \\ 0.00 \\ 0.00 \\ 11.89 \\ 0.14 \\ 00.72 \end{array}$	11.73 16.38 0.08 13.07 0.00 0.00	12.14 15.15 0.07 13.76 0.00 0.00	20.74 0.62 9.72 7.86 3.69 0.26	20.45 0.44 9.95 0.17 0.05 9.11	23.01 6.991 0.00 2.66 0.02 0.07 10.93	21.97 3.43 0.37 0.00 22.47 0.00 0.00	$ \begin{array}{c} 19.13 \\ 0.12 \\ 0.00 \\ 0.00 \\ 11.31 \\ 0.08 \\ 02.22 \\ \end{array} $		
МпО МgO CaO Na ₂ O K ₂ O Сумма	$\begin{array}{c} 0.04 \\ 0.00 \\ 0.00 \\ 0.03 \\ 11.68 \\ 0.08 \\ 99.77 \end{array}$	24.65 0.39 8.52 0.04 0.03 9.08 94.06	6.40 0.05 2.62 0.00 0.00 9.34 91.39	$\begin{array}{c} 0.37\\ 0.00\\ 0.00\\ 0.00\\ 0.39\\ 15.60\\ 99.13 \end{array}$	0.05 0.00 0.00 11.89 0.14 99.73	11.73 16.38 0.08 13.07 0.00 0.00 100.12	12.14 15.15 0.07 13.76 0.00 0.00 99.99	20.74 0.62 9.72 7.86 3.69 0.26 98.49	20.45 0.44 9.95 0.17 0.05 9.11 93.88	$\begin{array}{c} 25.01 \\ 6.991 \\ 0.00 \\ 2.66 \\ 0.02 \\ 0.07 \\ 10.93 \\ 94.32 \\ 0.404 \end{array}$	$\begin{array}{c} 21.97\\ 3.43\\ 0.37\\ 0.00\\ 22.47\\ 0.00\\ 0.00\\ 95.40\\ \end{array}$	19.13 0.12 0.00 0.00 11.31 0.08 99.23		
MnO MgO CaO Na ₂ O K ₂ O Сумма X_{Mg}	0.04 0.00 0.00 0.03 11.68 0.08 99.77 -	24.65 0.39 8.52 0.04 0.03 9.08 94.06 0.381	$\begin{array}{c} 6.40\\ 0.05\\ 2.62\\ 0.00\\ 0.00\\ 9.34\\ 91.39\\ 0.422\\ \end{array}$	0.37 0.00 0.00 0.00 0.39 15.60 99.13	0.05 0.00 0.00 11.89 0.14 99.73	$11.73 \\ 16.38 \\ 0.08 \\ 13.07 \\ 0.00 \\ 0.00 \\ 100.12 \\ 0.012 \\$	$12.14 \\ 15.15 \\ 0.07 \\ 13.76 \\ 0.00 \\ 0.00 \\ 99.99 \\ 0.010$	$\begin{array}{c} 0.91\\ 20.74\\ 0.62\\ 9.72\\ 7.86\\ 3.69\\ 0.26\\ 98.49\\ 0.455\end{array}$	20.45 0.44 9.95 0.17 0.05 9.11 93.88 0.464	$\begin{array}{c} 23.01 \\ 6.991 \\ 0.00 \\ 2.66 \\ 0.02 \\ 0.07 \\ 10.93 \\ 94.32 \\ 0.404 \end{array}$	21.97 3.43 0.37 0.00 22.47 0.00 0.00 95.40 -	19.13 0.12 0.00 0.00 0.00 11.31 0.08 99.23 -		
MnO MgO CaO Na ₂ O K ₂ O Cymma X_{Mg} X_{An}	$\begin{array}{c} 0.04\\ 0.00\\ 0.00\\ 0.03\\ 11.68\\ 0.08\\ 99.77\\ -\\ 0.130\\ \end{array}$	24.65 0.39 8.52 0.04 0.03 9.08 94.06 0.381 -	6.40 0.05 2.62 0.00 0.00 9.34 91.39 0.422 -	0.37 0.00 0.00 0.39 15.60 99.13 - -	0.05 0.00 0.00 11.89 0.14 99.73 - 0.000	11.73 16.38 0.08 13.07 0.00 0.00 100.12 0.012 - 260	12.14 15.15 0.07 13.76 0.00 0.00 99.99 0.010 -	0.91 20.74 0.62 9.72 7.86 3.69 0.26 98.49 0.455 -	20.45 0.44 9.95 0.17 0.05 9.11 93.88 0.464	23.01 6.991 0.00 2.66 0.02 0.07 10.93 94.32 0.404	21.97 3.43 0.37 0.00 22.47 0.00 0.00 95.40 -	$\begin{array}{c} 19.13 \\ 0.12 \\ 0.00 \\ 0.00 \\ 0.00 \\ 11.31 \\ 0.08 \\ 99.23 \\ - \\ 0.000 \end{array}$		
MnO MgO CaO Na ₂ O K ₂ O Cymma X_{Mg} X_{An} Alm Bri	0.04 0.00 0.03 11.68 0.08 99.77 - 0.130 -	24.65 0.39 8.52 0.04 0.03 9.08 94.06 0.381 - -	6.40 0.05 2.62 0.00 0.00 9.34 91.39 0.422 - -	0.37 0.00 0.00 0.39 15.60 99.13 - -	0.05 0.00 0.00 11.89 0.14 99.73 - 0.000 -	11.73 16.38 0.08 13.07 0.00 0.00 100.12 0.012 - 26.0 0.2	$12.14 \\ 15.15 \\ 0.07 \\ 13.76 \\ 0.00 \\ 0.00 \\ 99.99 \\ 0.010 \\ - \\ 26.8 \\ 0.2$	0.974 20.74 0.62 9.72 7.86 3.69 0.26 98.49 0.455 - -	20.45 0.44 9.95 0.17 0.05 9.11 93.88 0.464 -	23.01 6.991 0.00 2.66 0.02 0.07 10.93 94.32 0.404 -	21.97 3.43 0.37 0.00 22.47 0.00 0.00 95.40 - - -	19.13 0.12 0.00 0.00 11.31 0.08 99.23 - 0.000 -		
MnO MgO CaO Na ₂ O K ₂ O Cymma X_{Mg} X_{An} Alm Py Sr	0.04 0.00 0.03 11.68 0.08 99.77 - 0.130 - -	24.65 0.39 8.52 0.04 0.03 9.08 94.06 0.381 - -	6.40 0.05 2.62 0.00 9.34 91.39 0.422 - -	0.37 0.00 0.00 0.39 15.60 99.13 - - -	0.05 0.00 0.00 11.89 0.14 99.73 - 0.000 - -	$11.73 \\ 16.38 \\ 0.08 \\ 13.07 \\ 0.00 \\ 0.00 \\ 100.12 \\ 0.012 \\ - \\ 26.0 \\ 0.3 \\ 26.7 \\ 0.3 \\ 0.3 \\ 26.7 \\ 0.3 \\ $	12.14 15.15 0.07 13.76 0.00 0.00 99.99 0.010 - 26.8 0.3 23.8	0.974 20.74 0.62 9.72 7.86 3.69 0.26 98.49 0.455 - - -	20.45 0.44 9.95 0.17 0.05 9.11 93.88 0.464 - -	23.01 6.991 0.00 2.66 0.02 0.07 10.93 94.32 0.404 - -	21.97 3.43 0.37 0.00 22.47 0.00 0.00 95.40 - - - -	19.13 0.12 0.00 0.00 0.00 11.31 0.08 99.23 - 0.000 - -		
$\begin{array}{c} MnO\\ MgO\\ CaO\\ Na_2O\\ K_2O\\ Cymma\\ X_{Mg}\\ X_{An}\\ Alm\\ Py\\ Sp\\ Gras$	0.04 0.00 0.03 11.68 0.08 99.77 - 0.130 - - -	24.65 0.39 8.52 0.04 0.03 9.08 94.06 0.381 - - -	6.40 0.05 2.62 0.00 9.34 91.39 0.422 - - - -	0.37 0.00 0.00 0.39 15.60 99.13 - - - -	0.05 0.00 0.00 11.89 0.14 99.73 - 0.000 - - -	$11.73 \\ 16.38 \\ 0.08 \\ 13.07 \\ 0.00 \\ 0.00 \\ 100.12 \\ 0.012 \\ - \\ 26.0 \\ 0.3 \\ 36.7 \\ 37.0 \\ 100.12 \\ - \\ 26.0 \\ 0.3 \\ 36.7 \\ 37.0 \\ 100.12 \\ - \\ $	$12.14 \\ 15.15 \\ 0.07 \\ 13.76 \\ 0.00 \\ 0.00 \\ 99.99 \\ 0.010 \\ - \\ 26.8 \\ 0.3 \\ 33.8 \\ 39.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	0.91 20.74 0.62 9.72 7.86 3.69 0.26 98.49 0.455 - - - -	20.45 0.44 9.95 0.17 0.05 9.11 93.88 0.464 - - -	23.01 6.991 0.00 2.66 0.02 0.07 10.93 94.32 0.404 - - -	21.97 3.43 0.37 0.00 22.47 0.00 0.00 95.40 - - - - -	19.13 0.12 0.00 0.00 0.00 11.31 0.08 99.23 - 0.000 - - -		
MnO MgO CaO Na ₂ O K ₂ O Cymma X_{Mg} X_{An} Alm Py Sp Gros $_{2}^{VI}$	0.04 0.00 0.03 11.68 0.08 99.77 - 0.130 - - - - - - -	24.65 0.39 8.52 0.04 0.03 9.08 94.06 0.381 - - - - - -	6.40 0.05 2.62 0.00 9.34 91.39 0.422 - - - 31.9	0.37 0.00 0.00 0.39 15.60 99.13 - - - - - - -	0.05 0.00 0.00 11.89 0.14 99.73 - 0.000 - - - - - - - -	$11.73 \\ 16.38 \\ 0.08 \\ 13.07 \\ 0.00 \\ 0.00 \\ 100.12 \\ 0.012 \\ - \\ 26.0 \\ 0.3 \\ 36.7 \\ 37.0 \\ -$	12.14 15.15 0.07 13.76 0.00 0.00 99.99 0.010 - 26.8 0.3 33.8 39.0 -	0.91 20.74 0.62 9.72 7.86 3.69 0.26 98.49 0.455 - - - - - - -	20.45 0.44 9.95 0.17 0.05 9.11 93.88 0.464 - - - -	23.01 6.991 0.00 2.66 0.02 0.07 10.93 94.32 0.404 - - 23.7	21.97 3.43 0.37 0.00 22.47 0.00 0.00 95.40 - - - - - - - -	19.13 0.12 0.00 0.00 0.00 11.31 0.08 99.23 - 0.000 - - - - - -		
MnO MgO CaO Na ₂ O K ₂ O Cymma X_{Mg} X_{An} Alm Py Sp Gros a_{A1}^{VI}	0.04 0.00 0.00 0.03 11.68 0.08 99.77 - 0.130 - - - - - -	24.65 0.39 8.52 0.04 0.03 9.08 94.06 0.381 - - - - -	6.40 0.05 2.62 0.00 9.34 91.39 0.422 - - - 31.9	0.37 0.00 0.00 0.39 15.60 99.13 - - - - - -	0.05 0.00 0.00 11.89 0.14 99.73 - 0.000 - - - - -	$11.73 \\ 16.38 \\ 0.08 \\ 13.07 \\ 0.00 \\ 0.00 \\ 100.12 \\ 0.012 \\ - \\ 26.0 \\ 0.3 \\ 36.7 \\ 37.0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$12.14 \\ 15.15 \\ 0.07 \\ 13.76 \\ 0.00 \\ 0.00 \\ 99.99 \\ 0.010 \\ - \\ 26.8 \\ 0.3 \\ 33.8 \\ 39.0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	0.91 20.74 0.62 9.72 7.86 3.69 0.26 98.49 0.455 - - - - - -	20.45 0.44 9.95 0.17 0.05 9.11 93.88 0.464 - - - -	$\begin{array}{c} 23.01 \\ 6.991 \\ 0.00 \\ 2.66 \\ 0.02 \\ 0.07 \\ 10.93 \\ 94.32 \\ 0.404 \\ - \\ - \\ - \\ 23.7 \\ 16.8 \end{array}$	21.97 3.43 0.37 0.00 22.47 0.00 0.00 95.40 - - - - - -	19.13 0.12 0.00 0.00 0.00 11.31 0.08 99.23 - 0.000 - - - - -		
MnO MgO CaO Na ₂ O K ₂ O Cymma X_{Mg} X_{An} Alm Py Sp Gros a_{A1}^{VI} a_{Si} a_{Si}	0.04 0.00 0.00 0.03 11.68 0.08 99.77 - 0.130 - - - - - - - - -	24.65 0.39 8.52 0.04 0.03 9.08 94.06 0.381 - - - - -	$\begin{array}{c} 6.40\\ 0.05\\ 2.62\\ 0.00\\ 0.00\\ 9.34\\ 91.39\\ 0.422\\ -\\ -\\ -\\ 31.9\\ 12.5\\ 0\end{array}$	0.37 0.00 0.00 0.39 15.60 99.13 - - - - - - - -	0.05 0.00 0.00 11.89 0.14 99.73 - 0.000 - - - - - - -	11.73 16.38 0.08 13.07 0.00 0.00 100.12 0.012 - 26.0 0.3 36.7 37.0 -	12.14 15.15 0.07 13.76 0.00 99.99 0.010 - 26.8 0.3 33.8 39.0 -	0.91 20.74 0.62 9.72 7.86 3.69 0.26 98.49 0.455 - - - - - - -	20.45 0.44 9.95 0.17 0.05 9.11 93.88 0.464 - - - -	$\begin{array}{c} 23.01 \\ 6.991 \\ 0.00 \\ 2.66 \\ 0.02 \\ 0.07 \\ 10.93 \\ 94.32 \\ 0.404 \\ - \\ - \\ - \\ 23.7 \\ 16.8 \\ 10.2 \\ \end{array}$	21.97 3.43 0.37 0.00 22.47 0.00 0.00 95.40 - - - - - - - -	19.13 0.12 0.00 0.00 0.00 11.31 0.08 99.23 - 0.000 - - - - - -		
MnO MgO CaO Na ₂ O K ₂ O Сумма X_{Mg} X_{An} Alm Py Sp Gros a_{A1}^{VI} a_{Si} a_{K} Амфи-	0.04 0.00 0.00 0.03 11.68 0.08 99.77 - 0.130 - - - - - - - - - - - - -	24.65 0.39 8.52 0.04 0.03 9.08 94.06 0.381 - - - - - - - - -	6.40 0.05 2.62 0.00 9.34 91.39 0.422 - - - 31.9 12.5 0 -	0.37 0.00 0.00 0.39 15.60 99.13 - - - - - - - - - - - - - - - - -	0.05 0.00 0.00 11.89 0.14 99.73 - 0.000 - - - - - - - - - - - - - -	$11.73 \\ 16.38 \\ 0.08 \\ 13.07 \\ 0.00 \\ 0.00 \\ 100.12 \\ 0.012 \\ - \\ 26.0 \\ 0.3 \\ 36.7 \\ 37.0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	12.14 15.15 0.07 13.76 0.00 99.99 0.010 - 26.8 0.3 33.8 39.0 - - - -	20.74 0.62 9.72 7.86 3.69 0.26 98.49 0.455 - - - - - - Bar	20.45 0.44 9.95 0.17 0.05 9.11 93.88 0.464 - - - - - -	23.01 6.991 0.00 2.66 0.02 0.07 10.93 94.32 0.404 - - 23.7 16.8 10.2 -	21.97 3.43 0.37 0.00 22.47 0.00 0.00 95.40 - - - - - - - - - - - - -	19.13 0.12 0.00 0.00 0.00 11.31 0.08 99.23 - 0.000 - - - - - - - - - - - -		

Примечание. Обр. Нv-9/3, Hv-75/3, 1186/8, Hv-9/1 – гранат-эпидот-амфибол-слюдистый кристаллический сланец; Hv-13 – гранат-эпидот-амфибол-слюдистый основной сланец; 1185/4, 1186/4 – эпидот-амфибол-двуслюдяной кристаллический сланец; 1182 – гранат-эпидот-амфибол-слюдистый кварцит. Место взятия образцов – р. Правая Кварцевая.

* Номеклатура амфиболов дается по классификации [31]: *Act* – актинолит (actinolite), *Act-Hb* – актинолитовая роговая обманка (actinolitic hornblende), *Fer-Act* – ферроактинолит (ferro-actinolite), *F-Act-Hb* – ферроактинолитовая роговая обманка (ferroactinilitic hornblende), *Fer-Bar* – ферробарруазит (ferro-barroisite), *Fer-Eden* – ферроэденит (ferro-edenite). Расчет Fe³⁺ в амфиболах проведен по формуле: Fe³⁺ = Al^{IV}–Al^{VI}–2Ti–Na(A)–K(A)+Na(M₄).

 $\text{Mu-Phn: } a_{\text{Al}}^{\text{VI}} = (\text{Mg} + \text{Fe} + \text{Mn} + \text{Ti})/(\text{Mg} + \text{Fe} + \text{Mn} + \text{Ti} + \text{Al}^{\text{VI}}) \cdot 100, \\ a_{\text{Si}} = \text{Al}^{\text{IV}}/(\text{Al}^{\text{IV}} + \text{Si}) \cdot 100, \\ a_{\text{K}} = \text{Na}/(\text{Na} + \text{K}) \cdot 100 \text{ [32]}.$

Компо-	11	79	118	7/6	11	96	Hv–	83/1	Hv-	-70	Hv-5/1	
нент	Hb _c	Hb_r	Hb_c	Hb_r	Hb _c	Hb_r	Hb _c	Hb_r	Hb _c	Hb_r	<i>Hb_c</i>	
SiO ₂	50.62	50.50	48.18	53.03	53.76	52.20	50.23	50.10	50.84	50.02	51.40	
TiO ₂	0.09	0.07	0.14	0.07	0.00	0.05	0.08	0.13	0.11	0.11	0.04	
$Al_2\bar{O}_3$	5.78	5.32	7.07	3.61	2.74	4.30	6.42	6.49	5.90	6.13	4.20	
FeO	15.77	15.92	20.15	16.59	14.89	17.07	18.23	18.74	17.51	16.72	17.40	
MnO	0.31	0.26	0.38	0.29	0.21	0.19	0.35	0.37	0.41	0.37	0.22	
MgO	12.73	12.33	9.83	13.45	14.29	12.04	10.73	10.38	11.29	11.79	12.27	
CaO	7.56	8.15	7.92	10.52	11.32	8.70	6.85	6.91	7.17	7.97	8.95	
Na ₂ O	3.26	2.80	3.44	1.48	0.98	2.70	3.56	3.56	3.30	3.41	2.42	
K ₂ Ō	0.09	0.04	0.17	0.04	0.16	0.15	0.17	0.21	0.49	0.23	0.15	
Сумма	96.21	95.39	97.28	99.08	98.35	97.40	96.62	96.89	97.02	96.75	97.05	
X _{Mg}	0.585	0.576	0.460	0.597	0.631	0.557	0.508	0.497	0.535	0.557	0.557	
Ha 23 ^(O)												
Si	7.496	7.548	7.267	7.651	7.754	7.672	7.485	7.467	7.531	7.428	7.611	
Ti	0.008	0.006	0.016	0.006	0.000	0.004	0.007	0.014	0.011	0.011	0.004	
Al ^{IV}	0.504	0.452	0.733	0.349	0.246	0.328	0.515	0.533	0.469	0.572	0.389	
Al ^{VI}	0.506	0.486	0.518	0.265	0.210	0.418	0.614	0.609	0.562	0.502	0.345	
Fe ³⁺	0.631	0.525	0.608	0.399	0.235	0.365	0.629	0.621	0.568	0.487	0.473	
Fe ²⁺	1.322	1.465	1.917	1.602	1.561	1.733	1.679	1.715	1.601	1.589	1.681	
Mn	0.039	0.033	0.049	0.036	0.026	0.024	0.044	0.047	0.052	0.046	0.028	
Mg	2.809	2.746	2.196	2.892	3.071	2.637	2.383	2.305	2.492	2.609	2.707	
Ca	1.199	1.305	1.272	1.626	1.749	1.370	1.094	1.103	1.138	1.268	1.420	
Na	0.936	0.812	0.999	0.414	0.274	0.769	1.028	1.029	0.948	0.981	0.695	
K	0.017	0.007	0.032	0.007	0.029	0.028	0.032	0.040	0.093	0.044	0.028	
Амфибол	Bar	Win	Bar	Act	Act	Act	Bar	Bar	Win	Bar	Act	
Компо-	Hv-5/1	Hv-	27/1	Hv-	-38	Hv-83/2	Hv-85/1	1175/2	Hv-	-50		
нент	Hb _r	Hb _c	Hb _r	Hb _c	Hb _r	Hb	Hb	Hb	Hb _c	Hb _r		
SiO ₂	51.71	49.84	51.66	52.85	51.13	49.91	50.97	49.92	51.74	52.47		
TiO ₂	0.02	0.08	0.00	0.02	0.02	0.13	0.07	0.08	0.04	0.15		
Al ₂ O ₃	3.85	6.14	4.31	3.50	4.94	7.26	6.40	6.21	5.75	2.93		
FeO	17.33	19.53	18.19	17.06	17.90	16.11	15.26	18.28	17.98	16.73		
MnO	0.26	0.16	0.11	0.24	0.27	0.09	0.23	0.46	0.24	0.32		
MgO	12.24	10.71	12.38	11.69	11.37	11.31	12.77	10.78	11.05	12.03		
CaO	9.55	8.48	9.74	9.98	9.15	7.95	8.09	8.01	9.67	10.59		
Na ₂ O	1.98	3.01	1.96	1.65	1.91	3.63	2.99	3.40	1.91	0.95		
K ₂ O	0.17	0.28	0.23	0.19	0.21	0.27	0.18	0.21	0.22	0.18		
Сумма	97.11	98.23	98.58	97.18	96.90	96.66	96.96	97.35	98.60	96.35		
X _{Mg}	0.557	0.494	0.548	0.550	0.531 на 23	(0) 0.556	0.599	0.512	0.523	0.562		
Si I	7.633	7.384	7.445	7,781	7.589	7.383	7.466	7.423	7.540	7,789		
Ti	0.002	0.007	0.000	0.002	0.002	0.014	0.006	0.007	0.004	0.018		
Al ^{IV}	0.367	0.616	0.555	0.219	0.411	0.617	0.534	0.577	0.460	0.211		
Al ^{VI}	0.304	0.457	0.178	0.389	0.454	0.650	0.572	0.513	0.528	0.303		
Fe ³⁺	0.436	0.536	0.780	0.172	0.454	0.327	0.529	0.478	0.324	0.146		
Fe ²⁺	1.705	1.884	1.412	1.929	1.768	1.666	1.340	1.795	1.867	1.931		
Mn	0.033	0.020	0.014	0.030	0.034	0.012	0.028	0.058	0.030	0.040		
Mg	2.695	2.365	2.659	2.565	2.515	2.494	2.788	2.388	2.400	2.661		
Ca	1.512	1.346	1.504	1.574	1.455	1.260	1.270	1.276	1.510	1.684		
Na	0.567	0.864	0.547	0.471	0.549	1.041	0.848	0.980	0.539	0.274		
K	0.032	0.053	0.042	0.035	0.040	0.051	0.033	0.040	0.041	0.034		
Амфибол	Act	Act-Hb	Act-Hb	Act	Act	Bar	Bar	Bar	Act	Act		

Таблица 2. Представительные микрозондовые анализы амфиболов из эпидот-амфиболовых и эпидот-слюдистоамфиболовых зеленых сланцев верхней толщи хавывенской серии

Примечание. Обр. 1179, 1187/6, 1196, Hv-83/1, Hv-70, Hv-5/1 – эпидот-амфиболовый (±Chl) зеленый сланец; Hv-27/1, Hv-38, Hv-83/2, Hv-85/1 – эпидот-слюдисто-амфиболовый зеленый сланец; 1175/2 – меланократовый гранат-эпидот-амфиболовый зеленый сланец; Hv-50 – прослой меланократового эпидот-слюдисто-амфиболового зеленого сланца среди кристаллических сланцев нижней толщи.

Номенклатура амфиболов дается по классификации [31]: Act – актинолит (actinolite), Act-Hb – актинолитовая роговая обманка (actinolitic hornblende), Bar – барруазит (barroisite), Win – винчит (winchite). Fe³⁺ рассчитано по формуле: Fe³⁺ = Al^{IV}–Al^{VI}– 2Ti–Na(A)–K(A)+Na(M₄).

Ч		I man		I //.				- / 1	T					· · · I
EOX	Компо-	1179	Hv-5/1	Hv-29/1	Hv	-38	Hv-70	Hv-83/1	Hv-	83/2	Hv–	85/1	11	75
łМИ	нент	Mu-Phn	Mu-Phn	Mu-Phn	Bi	Mu-Phn	Mu-Phn	Mu-Phn	Bi	Mu-Phn	Bi	Mu-Phn	Bi	Mu-Phn
BI	SiO ₂	48.26	48.99	48.26	38.08	50.11	50.21	48.90	38.46	50.17	40.25	50.42	37.51	48.11
ž	TiO ₂	0.32	0.21	0.23	1.07	0.16	0.13	0.24	1.33	0.13	0.52	0.25	1.87	0.23
7	Al_2O_3	26.32	28.49	26.54	15.44	26.68	26.04	27.52	14.31	25.97	15.66	28.14	16.12	27.34
200	FeO	5.53	5.45	5.80	20.29	5.13	4.62	4.55	18.53	4.94	17.41	3.81	21.46	4.07
7	MnO	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.10	0.00	0.29	0.00
	MgO	2.86	2.23	4.36	9.81	2.79	3.31	2.37	11.89	3.52	12.01	2.82	9.75	2.46
	CaO	0.06	0.00	0.00	0.06	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.00
	Na ₂ O	0.17	0.05	0.23	0.07	0.05	0.30	0.51	0.00	0.28	0.00	0.64	0.00	0.22
	K ₂ O	10.18	10.00	10.29	9.31	10.82	10.45	10.09	10.23	10.61	9.91	10.14	9.23	10.40
	Сумма	93.70	95.42	95.71	94.18	95.74	95.06	94.18	94.75	95.62	95.92	96.22	96.23	92.83
		1	Į.			<u>1</u>	на 1	1(0)	1					<u>1</u>
	Si	3.335	3.305	3.278	2.935	3.380	3.400	3.338	2.938	3.425	2.994	3.363	2.847	3.331
	Ti	0.017	0.011	0.012	0.062	0.008	0.007	0.012	0.076	0.007	0.029	0.012	0.107	0.012
	Al	2.146	2.268	2.127	1.400	2.123	2.080	2.217	1.290	2.092	1.374	2.214	1.443	2.234
	Fe	0.320	0.308	0.329	1.308	0.289	0.262	0.260	1.184	0.282	1.082	0.212	1.362	0.236
	Mn	_	-	-	0.002	-	-	-	-	-	0.004	-	0.017	-
	Mg	0.295	0.224	0.441	1.127	0.280	0.334	0.241	1.354	0.235	1.331	0.280	1.103	0.254
	Ca	0.005	_	-	0.006	_	_	-	_	_	0.005	-	—	_
	Na	0.022	0.008	0.029	0.013	0.008	0.041	0.067	_	0.038	-	0.010	—	0.028
	Κ	0.897	0.860	0.891	0.915	0.931	0.902	0.878	0.997	0.924	0.940	0.862	0.894	0.918
	X_{Mg}	0.480	0.421	0.573	0.463	0.492	0.561	0.486	0.534	0.582	0.551	0.569	0.447	0.518
	$a_{ m Al}^{ m VI}$	29.9	25.7	35.8	-	27.7	28.9	24.8	-	25.7	-	24.2	-	24.3
	$a_{\rm Si}$	16.6	17.3	18.1	-	15.5	15.0	16.6	-	14.4	_	15.9	_	16.7
	$a_{\rm K}$	2.5	0.9	3.2	-	0.9	4.3	7.0	-	4.0	-	1.1	-	3.0

Таблица 3. Представительные микрозондовые анализы слюд из эпидот-слюдисто-амфиболовых зеленых сланцев верхней толщи хавывенской серии

Примечание. Места взятия образцов: 1179, Hv-5/1 – истоки р. Правая Кварцевая; Hv-29/1, Hv-38 – р. Ольховая; Hv070, 1175 – р. Майнарка; Hv-83/1, Hv-83/2, Hv-85/1 – р. Укинский Севан.

 $a_{A1}^{VI} = (Mg + Fe + Mn + Ti)/(Mg + Fe + Mn + Ti + Al^{VI}) \cdot 100, a_{Si} = Al^{IV}/(Al^{IV} + Si) \cdot 100, a_{K} = Na/(Na + K)$ [32].

9

Рис. 3. Диаграммы (K₂O + Na₂O) – SiO₂ (а) и K₂O–SiO₂ (б) для метаморфических пород Хавывенской возвышенности. Использованы данные табл. 4 и данные, приведенные в работе [19]. Поля составов вулканических серий: толеитовой, известково-щелочной, высококалиевой известково-целочной и шошонитовой на диаграмме K₂O–SiO₂ по [33] *1*–2 – метавулканиты нижней (1) и верхней (2) толщ хавывенской серии.

отличаются высоким содержанием фенгитовой составляющей (табл. 3).

Кварциты верхней толщи характеризуются довольно однообразным минеральным составом. Количественные вариации породообразующих минералов позволяют выделить хлорит-эпидотамфиболовые, хлорит-фенгит-амфиболовые, гранат-амфибол-слюдистые и слюдисто-амфиболовые разности.

ГЕОХИМИЯ МЕТАМОРФИЧЕСКИХ ПОРОД И ГЕОДИНАМИЧЕСКАЯ ОБСТАНОВКА ИХ ФОРМИРОВАНИЯ

Химический состав и геохимическая характеристика метаморфических пород хавывенской серии приведены в табл. 4. Реконструкция первичной природы отложений нижней толщи позволила выделить среди них как аповулканогенные, так и апотерригенные образования. Последние имеют ограниченное распространение в верхах толщи и представлены слюдистыми и гранат-слюдистыми (±эпидот, ±амфибол) кварцитовыми сланцами, отвечающими по составу субграуваккам, и меньше –

Рис. 4. Соотношения Zr и Nb с K₂O в кристаллических сланцах нижней толщи Хавывенской возвышенности (точки). Сплошная линия – поле лав островных дуг; штриховая – лав абсарокит-шошонитлатит-трахитовой серии и штрих-пунктирная – лав щелочной оливин-базальтовой серии Срединного хребта Камчатки [34].

кварцитами. Эти породы отличает повышенная кремнеземистость, аномально низкие концентрации глинозема и щелочей [19]. Большая же часть кристаллических сланцев нижней толщи, обладающих порфиробластическими структурами, принадлежит к аповулканогенным образованиям варьирующей кремнекислотности, отвечая составу андезитов, дацитов, риолитов, трахиандезитов и трахидацитов, причем преобладают андезитовые, дацитовые и трахидацитовые разности (рис. За). Их отличает повышенная концентрация натрия, калия, литофильных элементов (Rb, Sr, Ba, Nb, Th, Zr, Hf, Ta, U) и низкие содержания Ti, Co, Ni, Cr, V. Для рассматриваемых пород характерны широкие вариации содержания К₂О, определяющие наличие среди них пород как низкокалиевой (толеитовой), так и высококалиевой (шошонитовой) серий с преобладанием вулканитов высококалиевой известково-щелочной серии (рис. 3б). Обращает на себя внимание очень высокие концентрации стронция в ряде образцов кристаллических сланцев, наиболее обогащенных К₂О, что подчеркивалось в более ранней работе авторов [19].

ΓEC	ности (окис	слы – мас. %, элементы – г/т)												
AXC			ŀ	Іижняя толц	<i>ц</i> а				Верхня	я толща				
IMN	Элементы	1185/4	1186/1	1186/4	Hv-9/3	Hv-12/1	1179	1187/3	1188/3	1196	1200	Hv-85/1		
В		1	2	3	4	5	6	7	8	9	10	11		
Ň	SiO ₂	65.55	64.01	66.31	66.34	66.11	47.93	51.98	47.62	47.44	48.51	50.74		
7	TiO ₂	0.53	0.60	0.52	0.38	0.61	2.00	1.24	1.41	2.36	1.79	0.72		
2	Al_2O_3	15.39	14.90	15.05	16.91	15.55	13.76	16.20	15.34	13.83	14.16	17.56		
007	Fe_2O_3	4.61	4.65	2.24	2.23	1.82	7.18	6.20	6.28	6.44	5.77	6.21		
-	FeO	1.07	1.53	2.14	2.12	2.91	5.45	6.12	7.37	6.94	6.35	3.84		
	MnO	0.08	0.12	0.05	0.18	0.13	0.28	0.19	0.23	0.18	0.23	0.17		
	MgO	0.95	1.83	0.92	0.63	1.85	6.72	4.82	6.74	7.15	8.15	8.31		
	CaO	1.13	1.69	0.80	4.39	1.72	9.06	5.83	7.53	9.32	8.50	4.90		
	Na ₂ O	5.83	4.75	4.63	4.44	6.50	3.03	5.28	5.55	1.95	2.98	4.65		
	$\tilde{K_2O}$	3.64	4.18	5.07	1.31	0.83	0.79	0.29	0.16	0.29	0.31	1.00		
	P_2O_5	H.o.	0.15	0.20	0.16	0.24	0.26	0.16	0.20	0.39	0.30	0.27		
	H_2O^+	_	_	_	0.81	1.52	_	_	_	_	_	_		
	П.п.п.	1.43	1.20	2.08	_	_	2.56	1.57	1.76	2.85	2.65	1.00		
	Сумма	100.02	99.61	100.01	99.90	99.79	99.02	99.88	100.19	99.14	99.70	99.37		
	V	41.00	47.47	29.32	76.45	52.97	424.19	307.09	396.09	327.96	272.33	230.55		
	Cr	5.32	3.30	6.35	2.83	21.47	105.45	4.53	8.17	97.14	77.16	130.80		
	Ni	6	8	8	20	14	70	25	26	80	57	48		
	Co	8.46	8.48	6.49	4.35	9.18	31.18	19.36	26.56	22.09	64.67	17.70		
	Cu	20.11	36.72	39.03	33.44	48.65	38.99	26.35	34.92	15.86	52.62	110.76		
	Zn	57.71	70.87	45.12	90.85	72.00	106.67	87.61	69.98	80.57	14.99	71.49		
	Ga	18.02	17.37	17.29	15.89	17.22	19.06	18.20	15.01	13.29	1.51	14.83		
	Ge	1.46	1.33	0.86	1.32	1.33	2.26	1.85	1.15	0.98	11.22	1.70		
	Rb	78.00	85.18	74.52	27.80	15.36	13.40	2.65	2.05	4.36	363.84	14.51		
	Sr	106.01	132.71	46.66	3695.87	78.52	169.03	235.42	215.17	184.29	18.24	270.78		
	Y	40.45	36.26	29.13	17.35	35.57	46.89	25.02	19.24	54.46	56.83	24.73		
	Zr	272.99	292.90	299.21	119.50	149.05	133.64	74.30	50.42	170.06	0.82	142.36		
	Nb	5.93	5.70	5.52	2.87	2.52	3.20	0.90	0.79	3.76	< 0.30	1.25		
	Sn	1.37	2.17	2.57	1.32	1.67	1.24	0.66	0.42	1.01	227.39	0.99		
	Ba	1117.65	1223.33	1284.60	675.03	433.47	174.72	25.71	13.21	34.33	4.92	428.45		
	La	28.9	127.92	26.78	15.01	16.05	4.06	3.80	2.68	4.79	12.25	14.10		
	Ce	62.76	65.74	62.66	31.01	38.48	12.16	11.19	7.92	15.24	1.68	34.60		
	Pr	8.22	8.05	7.53	3.77	5.12	2.19	1.79	1.33	2.59	7.54	4.78		
	Nd	33.87	34.78	30.41	15.10	24.48	13.33	10.92	7.40	16.49	2.52	22.65		
	Sm	7.07	7.10	6.24	2.65	6.12	4.46	3.55	2.45	5.76	0.74	5.67		

Таблица 4. Содержания петрогенных, рассеянных и редких элементов в метаморфических породах нижней и верхней толщ Хавывенской возвышенности (окислы – мас. %, элементы – г/т)

 \square

Таблица 4. Окончание

		Η	Нижняя толц	ца		Верхняя толща						
Элементы	1185/4	1186/1	1186/4	Hv-9/3	Hv-12/1	1179	1187/3	1188/3	1196	1200	Hv-85/1	
	1	2	3	4	5	6	7	8	9	10	11	
Eu	1.20	1.21	1.08	0.88	1.36	1.38	1.10	0.80	1.84	2.55	1.36	
Gd	6.48	6.24	5.20	2.70	5.18	5.55	3.26	2.77	7.37	0.41	5.46	
Tb	0.97	0.94	0.76	0.42	0.96	1.16	0.61	0.44	1.26	2.51	0.62	
Dy	6.15	5.77	4.87	2.33	5.76	6.84	3.55	3.65	9.86	0.51	4.08	
Но	1.21	1.20	1.00	0.53	1.10	1.65	0.81	0.60	1.98	1.67	0.80	
Er	3.75	3.34	3.10	1.56	3.51	4.49	2.29	1.59	6.01	0.22	2.25	
Tm	0.53	0.53	0.54	0.29	0.54	0.70	0.39	0.27	0.79	1.95	0.34	
Yb	3.99	3.55	3.70	1.85	3.52	4.71	1.93	1.84	5.62	0.21	2.36	
Lu	0.73	0.64	0.61	0.30	0.52	0.64	0.35	0.26	0.69	1.42	0.35	
Hf	6.94	6.70	7.06	2.81	3.95	3.39	1.98	1.27	4.14	-0.01	3.64	
Та	0.24	0.27	0.31	0.21	0.09	0.09	0.01	0.01	0.11	5.02	0.03	
Pb	9.96	20.97	9.32	17.65	10.65	2.01	2.71	2.16	1.49	1.14	5.69	
Th	12.75	12.82	13.00	5.14	5.37	0.20	0.34	0.20	0.25	0.89	2.59	
U	3.52	3.59	3.61	1.45	1.51	0.64	0.07	0.01	0.03		0.79	
${}^{87}\text{Sr}/{}^{86}\text{Sr}\pm 2\sigma$	$\begin{array}{c} 0.70556 \pm \\ \pm \ 0.00021 \end{array}$	$\begin{array}{c} 0.70862 \pm \\ \pm \ 0.00013 \end{array}$	$\begin{array}{c} 0.70764 \pm \\ \pm 0.00015 \end{array}$	$\begin{array}{c} 0.70421 \pm \\ \pm 0.00013 \end{array}$	$0.70690 \pm \pm 0.00008$	0.70445 ± 0.00033	0.70480 ± 0.00015	$0.70716 \pm $ ± 0.00018	0.70457 ± 0.00020	0.70815 ± 0.00012	$0.70704 \pm \pm 0.00014$	
К,г/т	30217.7	34700.5	42088.9	10875.0	6890.3	6558.2	2407.5	1328.3	2407.5	2573.5	8301.6	
K/Rb	387.4	407.4	564.8	391.2	448.6	489.4	908.5	647.9	552.2	229.4	572.1	
K/La	1045.2	1242.9	1571.7	724.5	429.3	1615.3	633.5	495.6	502.6	523.1	588.8	
Na ₂ O/K ₂ O	1.60	1.14	0.91	3.39	7.83	3.84	18.21	34.69	6.72	9.61	4.65	
(La/Sm) _N	2.55	2.46	2.68	3.54	1.64	0.57	0.67	0.68	0.5	1.22	1.55	
(La/Yb) _N	4.92	5.34	4.92	5.51	3.11	0.59	1.34	0.99	0.58	1.71	4.06	
Ba/La	38.66	43.82	47.97	44.97	27.01	43.03	6.76	4.93	7.17	46.22	30.25	
Ba/Nb	188.5	214.6	232.7	235.2	172.0	54.6	28.6	16.7	9.1	277.3	341.2	
Ba/Zr	4.1	4.2	4.3	5.7	2.9	1.3	0.4	0.3	0.2	4.0	3.0	
Ba/Th	87.7	95.4	98.8	131.3	80.7	873.6	75.6	86.1	137.3	199.5	165.4	
Th/Ta	53.1	47.5	41.9	24.5	59.7	2.2	34.0	20.0	2.3	_	86.3	

Примечание. 1–5 – гранат ± эпидот ± амфибол-слюдистые и эпидот-двуслюдянные кристаллические сланцы; 6–11 – эпидот-амфиболовые ± хлорит ± фенгит ± биотит зеленые сланцы. Н.о. – не определялось.

ТАРАРИН и др.

На диаграмме $Zr-K_2O$ и Nb- K_2O (рис. 4) видно, что по уровню концентрации Nb и Zr (а также TiO_2) кристаллические сланцы являются типичными представителями семейства островодужных вулканитов, точки состава которых попадают в поле позднекайнозойских вулканитов высококалиевой абсарокит-шошонит-латит-трахитовой серии Срединного хребта Камчатки, резко отличаясь по концентрации этих элементов от более щелочных пород щелочной оливин-базальтовой серии этого же региона [34]. Эти геохимические особенности сближают рассматриваемые породы с субщелочными вулканитами окраинно-континентальных вулканических поясов [32]. С определенной долей условности их можно сопоставить с вулканитами шошонитлатитовой серии активных континентальных окраин [35, 36].

Впервые полученные данные по содержанию редкоземельных элементов и распределению изотопов стронция в метаморфических породах Хавывенской возвышенности (табл. 4) позволили дать надежное обоснование геохимических особенностей пород нижней и верхней толщ хавывенской серии и сделать выводы о геодинамической обстановке их формирования.

Кристаллические сланцы нижней толщи обладают высокими содержаниями крупноионных литофильных элементов (K, Rb, Sr, Ba, La, Ce. Th, U) относительно высокозарядных компонентов, что фиксируется высокими Ba/Zr и La/Ta отношениями (табл. 4), типичными для продуктов надсубдукционного магматизма. Для рассматриваемых пород характерны обогащенные легкими лантаноидами тренды распределения РЗЭ (рис. 5а), близкими к таковым для вулканических серий островных дуг. На графике видно, что тренды распределения РЗЭ кристаллических сланцев нижней толщи сходны с трендами кирганикской свиты кампан-маастрихтского возраста восточного обрамления Срединного хребта Камчатки [37] и кайнозойских вулканических пород высококалиевой известково-щелочной и абсарокит-шошонит-латит-трахитовой серий северной части этого хребта [38]. Наличие на диаграмме распределения РЗЭ значительной отрицательной европиевой аномалии обусловлена, вероятно, участием в магмогенезисе исходных пород небольшого количества (≤1%) субдуцируемого осадка [39].

Многокомпонентные дискриминантные диаграммы метавулканитов нижней толщи, нормированные по примитивной мантии (рис. 5б), отчетливо фиксируют глубокий Nb-Ta-минимум, типичный для вулканитов известково-щелочной серии надсубдукционных геодинамических обстановок.

Геохимические данные свидетельствуют, что кристаллические сланцы нижней толщи характеризуются высокими Ba/Nb и Th/Ta отношениями, что обусловлено, вероятно, участием в магмагенезисе

ГЕОХИМИЯ № 7 2007

исходных пород флюидной компоненты из субдуцируемой океанической литосферы, а высокие содержания LILE по отношению к HFSE, высокие ⁸⁷Sr/⁸⁶Sr и низкие Sr/Nd отношения обусловлены, повидимому, участием в формировании исходных островодужных расплавов небольшого количества пелагических осадков, погружающихся совместно с субдуцируемой океанической плитой [41, 42].

Повышенная величина отношений изотопов стронция ⁸⁷Sr/⁸⁶Sr, варьирующих в кристаллических сланцах от 0.70421 до 0.70862 (табл. 4), обусловлена, вероятно, обогащением исходных расплавов субдукционной фазой, так как повышенные метки стронция характеризуются положительной корреляцией с повышенными содержаниями крупноионных литофильных элементов. Аналогичный эффект обогащения исходных расплавов радиогенным стронцием можно объяснить смешением первичного источника толеитов MOR с внутриплитными расплавами. Однако низкие концентрации ниобия в изученных породах (табл. 4) исключают возможность участия внутриплитного источника с повышенными содержаниями высокозарядных элементов (Ti, Zr, Nb, Y). К сожалению, у нас нет данных по распределению в породах изотопов Nd и Pb, что не позволяет точно определить положение вулканитов Хавывенской возвышенности по отношению к конечным компонентам обогащенной мантии. Однако, высокие 87 Sr/ 86 Sr отношения в изученных породах – свидетельствуют об их принадлежности к тренду, ограниченному количеством EM2 [43] обогащенной мантии.

Петрохимический анализ позволяет среди отложений верхней толщи Хавывенской возвышенности реконструировать аповулканогенные и первично осадочные образования. Осадочные породы представлены кварцитами, состав которых свидетельствует, что они образовались при метаморфизме кремней, содержащих незначительную примесь вулканогенного материала. К метаосадочным образованиям можно отнести и тонкополосчатые альбит-магнетит-амфибол-гранатовые породы, сопоставимые по химизму с железо-марганцевыми корками океанических областей. Аповулканогенные породы по составу отвечают альбитизированным (спилитизированным) базальтам (преобладают), трахибазальтам и трахиандезитобазальтам (табл. 4; рис. За), располагаясь в полях известково-щелочных и толеитовых серий (рис. 3б). На дискриминантных петрохимических диаграммах [44] зеленые сланцы верхней толщи большей частью попадают в поля базальтов срединно-океанических хребтов и внутриплитных базальтов. Специфической особенностью состава этих пород являются повышенная титанистость и железистость, низкие концентрации калия и литофильных элементов (Rb, Ba, Zr), отвечающие их содержанию в нормальных толеитовых базальтах срединно-океанических хребтов. От последних метавулканиты отличаются

Рис. 5. Нормированные по хондриту [40] графики содержаний РЗЭ (а) и многокомпонентные дискриминантные диаграммы (б), нормированные по примитивной мантии [39] для метаморфических пород Хавывенской возвышенности. Использованы данные табл. 4. На диаграмме РЗЭ (а) штриховым контуром показана область составов позднемеловых-палеогеновых пород шошонитовой серии кирганикской свиты Центральной Камчатки [37], а крапом – область составов позднекайнозойских вулканических пород высококалиевой известково-щелочной и абсарокит-шошонит-латит-трахитовой серий Срединного хребта Камчатки [38].

несколько повышенными концентрациями стронция и железа и пониженными содержаниями Mg, Ni, Со и Cr, больше соответствуя вулканитам окраинных бассейнов. По соотношению Na₂O/K₂O зеленые сланцы – типичные породы K-Na субщелочной серии (Na₂O/K₂O во всех изученных образцах >1). Высокое Na/K-отношение рассматриваемых пород обусловлено интенсивными процессами спилитизации исходных вулканитов с замещением первичного плагиоклаза почти чистым альбитом.

По соотношению Ba/La и $(La/Yb)_N$ зеленые сланцы в наибольшей степени отвечают базальтам

MORB, хотя некоторые образцы этих пород характеризуются несколько повышенным Ba/La отношением (табл. 4), что обусловлено вкладом в их состав островодужного компонента [45].

На графике нормированных по хондриту содержаний РЗЭ (рис. 5а) видно, что для зеленых сланцев характерен деплетированный спектр распределения легких лантаноидов (La/Sm)_N = 0.5-1.5; (La/Yb)_N = 0.6-4.0; аналогичный спектру распределения РЗЭ толеитов срединно-океанических хребтов. Как и толеиты MORB зеленые сланцы обладают сходными Nb/La отношениями. Многокомпо-

нентные дискриминантные диаграммы этих пород (рис. 5б) также сходны с диаграммами, типичными для MORB. Существенным отличием является наличие на дискриминантных графиках значительного Nb-Ta-минимума, свидетельствующего об участии субдукционного компонента в магмогенезисе исходных вулканитов [45, 46]. Этот вывод подтверждается также повышенными K/La (500–1600) и очень низкими (La/Yb)_N отношениями, изменяющимися от 0.59 до 4.06 (табл. 4). Влияние субдукционного компонента при формировании зеленых сланцев верхней толщи обусловливает и высокие отношения изотопов стронция ⁸⁷Sr/⁸⁶Sr, варьирующие от 0.70445 до 0.70815 (табл. 4).

Таким образом, геохимический анализ распределения главных, рассеянных, редкоземельных элементов и изотопов стронция в кристаллических сланцах нижней толщи хавывенской серии свидетельствует, что высокие содержания в них литофильных элементов с большим ионным радиусом, высокие К/La (430–1570), Ba/Th (80–130), Th/Ta (25–60) и La/Nb (4.9–6.4) отношения (табл. 4) в сочетании с глубоким Та-Nb-минимумом (рис. 5), низкими (La/Yb)_N и высокими ⁸⁷Sr/⁸⁶Sr отношениями обусловлены субдукционной природой исходных вулканитов нижней толщи Хавывенской возвышенности, что позволяет предполагать их формирование в надсубдукционной обстановке островной вулканической палеодуги.

Геохимические особенности распределения рассеянных и редкоземельных элементов и изотопов стронция в метавулканитах верхней толщи хавывенской серии, показывающих совмещение в их составе признаков деплетированных расплавов родоначальных для толеитов срединно-океанических хребтов и субдукционного компонента, и обусловившего значительный Та-Nb-минимум, повышенные K/La, низкие (La/Yb)_N и высокие ⁸⁷Sr/⁸⁶Sr отношения. Все эти данные, свидетельствуют, что исходные образования формировались в условиях окраинного бассейна палеоостроводужной системы.

Таким образом, геохимическое изучение зеленых сланцев верхней толщи показало, что в их составе четко прослеживается участие деплетированных источников типа N-MORB и субдукционной компоненты, подтверждая выводы [45, 46] о гетерогенности магматических источников, питающих спрединговые процессы в окраинных бассейнах.

ВОЗРАСТ МЕТАМОРФИЧЕСКИХ ПОРОД ХАВЫВЕНСКОЙ ВОЗВЫШЕННОСТИ

Возраст исходных пород Хавывенской возвышенности и возраст их метаморфизма всегда являлся предметом дискуссии. Калий-аргоновые датировки возраста, составляющие 122, 92 и 53 млн. лет, достаточно неопределенны и противоречивы [28]. ⁴⁰Ar/³⁹Ar-датирование, проведенное по биотиту кри-

ГЕОХИМИЯ № 7 2007

Таблица 5. К-Аг-возраст лейкократовых эпидот-слюдистых кристаллических сланцев нижней толщи хавывенской серии

Образец	(К ± о), мас. %	$({}^{40}\operatorname{Ar}_{rad} \pm \sigma),$	К-Аг-воз- раст, млн. лет
1186/1	3.53 ± 0.02	9.73 ± 0.10	39.3 ± 0.5
1186/2	3.53 ± 0.01	9.09 ± 0.27	36.8 ± 1.1
1186/4	4.50 ± 0.02	10.20 ± 0.19	32.4 ± 0.6
1185/2	3.23 ± 0.01	8.19 ± 0.53	36.2 ± 2.3

Примечание. Определение К-Аг-возраста проводилось по валовым пробам пород в лаборатории изотопной геохронологии СВКНИИ ДВО РАН. При расчетах использованы константы: $\lambda_{\rm k} = 0.581 \times 10^{-10} \text{ год}^{-1}; \lambda_{\beta} = 4.962 \times 10^{-10} \text{ год}^{-1}; распространенность изотопов: }^{39}{\rm Ar} - 93.26, {}^{40}{\rm K} - 0.01167, {}^{41}{\rm K} - 6.73 \text{ ат. }\%; изотопное отношение атмосферного аргона }^{40}{\rm Ar}/{}^{36}{\rm Ar} = 295.5.$

сталлических сланцев нижней толщи (37.2 ± 0.4 млн. лет) и по роговой обманке из зеленого сланца верхней толщи (55 ± 5 млн. лет) хавывенской серии, указывают на раннекайнозойский (эоценовый) возраст метаморфизма исходных пород [47].

Нами было предпринято дополнительное К-Аr-датирование возраста метаморфизма по валовым пробам высококалиевых кристаллических сланцев нижней толщи (табл. 5). Полученные К-Аr-датировки имеют хорошую сходимость с более ранними ⁴⁰Ar/³⁹Ar-определениями и свидетельстуют, что метаморфические преобразования исходных пород Хавывенской возвышенности происходили в эоцене при ларамийском тектогенезе.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Предложенные модели тектонического развития Корякско-Камчатского региона [1, 4, 14, 48–54 и др.] основаны на традиционных схемах, рассматривающих этот регион как асимметрично-зональное аккреционное сооружение, возникшее в результате мезо-кайнозойской аккреции тихоокеанских плит к Азиатскому континенту. В структурах Восточной Камчатки хорошо сохранились террейны, соответствующие двум внутриокеаническим островным палеодугам: Озерновско-Валагинской (или Ачайваям-Валагинской) и Кроноцкой, разделенных структурами Восточно-Камчатской кайнозойской аккреционной призмы [1, 10, 54]. История формирования этих палеодуг прослеживается с кампана, когда предполагается их заложение на океанических плитах Северной Пацифики примерно в 2-3 тыс. км к юго-востоку от края Азиатского континента [1, 10, 55, 56]. В их пределах происходили мощные извержения лав и туфов основного, среднего и меньше кислого и щелочного состава. В современной структуре Восточной Камчатки и юга Корякского нагорья эффузивные образования этих палеодуг слагают отдельные пластины в покровных и чешуйчатых структурах, прослеживающихся от п-ова Говена на севере до Валагинского хребта на юге [1].

Палеотектонические реконструкции позволяют предполагать, что кампан-маастрихтский глубоководный желоб Озерновско-Валагинской островодужной системы располагался к северо-западу от активной вулканической дуги на плите Кула [10]. Вулканизм в этой дуге и ее сближение с Азиатским материком были обусловлены быстрым дрейфом плиты Кула относительно Евразии. Можно предполагать, что современное положение коллизионного шва, маркирующего палеозону субдукции Озерновско-Валагинской дуги, приурочено к Хавывенскому погребенному поднятию Центрально-Камчатской депрессии, фиксируемому мощными линейными аномалиями поля силы тяжести [23, 24].

Предполагается, что активный вулканизм в рассматриваемой дуге прекращается в середине палеоцена [1, 10, 57], когда отмирает существующая зона субдукции и возникает новая, располагающаяся северо-западнее вулканической дуги и наклоненная под материк. Учитывая палеомагнитные данные [55, 58], наиболее вероятным временем начала коллизии Озерновско-Валагинской дуги с Азиатским континентом можно считать первую половину эоцена [1, 10, 59].

Высококалиевые вулканиты известково-щелочной серии чрезвычайно характерны для продуктов магматизма Озерновско-Валагинской островной палеодуги. В кирганикской свите восточного обрамления Срединного хребта Камчатки они представлены вулканитами шошонит-латитовой ассоциации [37, 60], в хребтах Валагинский и Тумрок развиты щелочно-ультраосновные и шошонит-латитовые вулканиты и их интрузивные аналоги [61-64]. Расплавные включения в минералах щелочно-ультраосновных пород Валагинского хребта свидетельстуют, что их исходные расплавы по составу были сходными с расплавами шошонитовых серий [65]. Вулканиты высококалиевой шошонитлатитовой серии характерны и для нижней толщи Хавывенской возвышенности, геохимические особенности которых аналогичны породам шошонитлатитовых серий Центральной Камчатки (рис. 5), позволяя предполагать, что вулканиты Хавывенской возвышенности также формировались в пределах кампан-палеогеновой Озерновско-Валагинской островной палеодуги.

В процессе аккреции и скучивания островодужных комплексов Озерновско-Валагинской и затем и Кроноцкой дуг и закрытия предостроводужных субокеанических окраинных бассейнов перед их фронтом происходило значительное увеличение мощности коры Восточной Камчатки, в глубоких частях которой могли осуществляться низкотемпературные метаморфические процессы, обусловившие формирование метаморфических пород Хавывенской возвышенности. Полученные К-Аг-датировки возраста метаморфических преобразований пород Хавывенской возвышенности соответствуют возрастному диапазону процессов коллизии и аккреции комплексов Озерновско-Валагинской и Кроноцкой островных дуг и разделяющего их океанического бассейна [1, 10, 59].

ЗАКЛЮЧЕНИЕ

Среди метаморфических пород Хавывенской возвышенности Восточной Камчатки выделено два разнородных комплекса метавулканических пород, сопровождаемых подчиненным количеством метаосадочных образований. В составе первого комплекса, слагающего нижнюю толщу видимого разреза возвышенности, преобладают лейкократовые амфибол-слюдистые (±гранат) и эпидот-слюдистые (±гранат) кристаллические сланцы, образовавшиеся по андезитам и дацитам и их высококалиевым разностям известково-щелочной серии островных дуг. Второй комплекс, формирующий верхнюю толщу возвышенности, состоит из спилитизированных базальтоидов, превращенных в эпидот-амфиболовые и фенгит-эпидот-амфиболовые зеленые сланцы, образующих совместно с кварцитами, серпентинитами и габброидами окраинноморскую офиолитовую ассоциацию.

Показано, что высокие содержания литофильных элементов с большим ионным радиусом, высокие K/La, Ba/Th, Th/Ta и La/Nb отношения в сочетании с глубоким Та-Nb-минимумом, низкими (La/Yb)_N и высокими ⁸⁷Sr/⁸⁶Sr отношениями свидетельствуют о субдукционной природе кристаллических сланцев нижней толщи, позволяя предполагать формирование исходных вулканитов в надсубдукционной обстановке Озерновско-Валагинской (Ачайваям-Валагинской) островной вулканической дуги кампан-палеогенового возраста. Установлено, что зеленые сланцы верхней толщи характеризуются совмещением признаков деплетированных расплавов типа толеитов срединно-океанических хребтов и субдукционных расплавов, обусловливающих глубокий Ta-Nb-минимум, низкие (La/Yb)_N и повышенные K/La и ⁸⁷Sr/⁸⁶Sr отношения, которые позволяют предполагать образование зеленых сланцев в обстановке окраинного бассейна перед фронтом Озерновско-Валагинской островной дуги.

Новые К-Аг-датировки возраста метаморфизма пород Хавывенской возвышенности, варьирующие от 32.4 до 39.3 млн лет, показывают, что метаморфические преобразования исходных пород происходили в эоцене и обусловлены процессами коллизии и аккреции островодужных комплексов Озерновско-Валагинской и Кроноцкой островных дуг с Азиатским континентом и закрытия предостроводужных океанических бассейнов перед их фронтом. Современное положение коллизионного шва, маркирующего палеозону субдукции Озерновско-Ва-

лагинской дуги и приуроченного к Хавывенскому погребенному поднятию Центрально-Камчатской депрессии, фиксируется мощными линейными аномалиями поля силы тяжести.

Работа выполнена при финансовой поддержке Дальневосточного отделения Российской Академии наук (грант 05-3-А-08-122).

СПИСОК ЛИТЕРАТУРЫ

- Аккреционная тектоника Восточной Камчатки / Под ред. Ю.М. Пущаровского. М.: Наука, 1993. 272 с.
- 2. Богданов Н.А., Чехович В.Д. О коллизии Западно-Камчатской и Охотоморской плит // Геотектоника. 2002. № 1. С. 72–85.
- 3. Зинкевич В.П., Колодяжный С.Ю., Брагина Л.Г. и др. Тектоника восточного обрамления Срединнокамчатского массива метаморфических пород // Геотектоника. 1994. № 1. С. 81–96.
- 4. Зинкевич В.П., Цуканов Н.В. Формирование аккреционной структуры Восточной Камчатки в позднем мезозое – раннем кайнозое // Геотектоника. 1992. № 4. С. 97–112.
- Кирмасов А.Б., Соловьев А.В., Хоуриган Дж.К. Коллизионная и постколлизионная структурная эволюция Андриановского шва (Срединный хребет, Камчатка) // Геотектоника. 2004. № 4. С. 64–90.
- Константиновская Е.А. Механизм аккреции континентальной коры: пример Западной Камчатки // Геотектоника. 2002. № 5. С. 59–78.
- 7. Рихтер А.В. Структура метаморфического комплекса Срединно-Камчатского массива // Геотектоника. 1995. № 1. С. 71–78.
- Соловьев А.В. Изучение тектонических процессов в областях конвергенции литосферных плит методами трекового датирования и структурного анализа. Дисс. ... д-ра геол.-минер. наук. М.: ГИН РАН, 2005. 49 с.
- 9. Соловьев А.В., Шапиро М.Н., Гарвер Дж.И. Лесновский тектонический покров, Северная Камчатка // Геотектоника. 2002. № 6. С. 45–59.
- Шапиро М.Н. Позднемеловая Ачайваям-Валагинская вулканическая дуга (Камчатка) и кинематика плит Северной Пацифики // Геотектоника. 1995. № 1. С. 58–70.
- Шапиро М.Н., Соловьев С.А., Щербинина Е.А. и др. Новые данные о времени коллизии островной дуги с континентом на Камчатке // Геология и Геофизика. 2001. Т. 42. № 5. С. 841–851.
- Konstantinovskaia E.A. Arc-continent collision and subduction reversal in the Cenozoic evolution of the Northwest Pacific: an example from Kamchatka (NE Russia) // Tectonophysics. 2001. V. 333. N 1/2. P. 75–94.
- Очерки тектонического развития Камчатки/Под ред. В.В.Белоусова. М.: Наука, 1987. 248 с.
- 14. Соколов С.Д. Аккреционная тектоника Корякско-Чукотского сегмента Тихоокеанского пояса. М.: Наука, 1992. 182 с.
- 15. Шапиро М.Н., Маркевич П.В., Гречин В.И. и др. Верхнемеловые и нижнепалеоценовые песчаники

ГЕОХИМИЯ № 7 2007

Камчатки: состав и проблемы источников // Литология и полезные ископаемые. 1992. № 6. С. 94–106.

- Шанцер А.Е., Шапиро М.Н., Колосков А.В. и др. Эволюция структуры Лесновского поднятия и прилегающих территорий в кайнозое (Северная Камчатка) // Тихоокеанская геология. 1985. № 4. С. 66–74.
- Соловьев А.В., Брэндон М.Т., Гарвер Дж.И. и др. Коллизия Олюторской островной дуги с Евразиатской континентальной окраиной: кинематические и возрастные аспекты // ДАН. 1998. Т. 360. № 5. С. 666–668.
- Бадрединов З.Г., Тарарин И.А., Литвинов А.Ф. и др. О природе метаморфизма пород Хавывенской возвышенности Камчатки // ДАН СССР. 1989. Т. 309. № 2. С. 405–409.
- 19. Тарарин И.А., Бадрединов З.Г. О природе доверхнемелового фундамента Восточной Камчатки // Ю.А.Мартынов, ред., Новые данные по петрологии магматических и метаморфических пород Камчатки. Владивосток: ДВНЦ АН СССР, 1989. С. 23–47.
- Литвинов А.Ф., Лопатин В.Б., Крикун Н.Ф. и др. Стратиграфия палеоген-неогеновых отложений пова Озерной (Восточная Камчатка) // Тихоокеанская геология. 1990. № 6. С. 68–77.
- Пампура В.Д., Сандимирова Г.П. Геохимия и изотопный состав стронция в гидротермальных системах. Новосибирск: Наука, 1991. 110 с.
- Чернышев И.В., Шатагин К.Н., Гольцман Ю.В. Высокоточная калибровка образцов изотопного состава стронция с помощью многоколлекторного масс-спектрометра // Геохимия. 2000. № 12. С. 1280–1285.
- 23. Апрелков С.Е., Ольшанская О.Н. Тектоническое районирование Центральной и Южной Камчатки по геологическим и геофизическим данным // Ти-хоокеанская геология. 1989. № 1. С. 53–66.
- Апрелков С.Е., Ольшанская О.Н., Иванова Г.И. Тектоника Камчатки // Тихоокеанская геология. 1991. № 3. С. 62–75.
- 25. Апрелков С.Е., Смирнов Л.М., Ольшанская О.Н. Природа аномальной зоны силы тяжести в Центрально-Камчатской депрессии // Ю.Ф.Малышев, ред., Глубинное моделирование геологических структур по гравитационным и магнитным данным. Владивосток: ДВНЦ АН СССР, 1985. С. 68–71.
- Геология западной части Беринговоморья / Под ред. С.М.Тильмана, С.Ф.Федорова. М.: Наука, 1990. 159 с.
- 27. *Цуканов Н.В.* Тектоническое развитие приокеанической зоны Камчатки в позднем мезозое–раннем кайнозое. М.: Наука, 1991. 103 с.
- Литвинов А.Ф. Геологическое строение южной части Литкинского прогиба (Восточная Камчатка). Дисс. канд. геол.-минерал. наук. Л.: ВСЕГЕИ, 1990. 24 с.
- Тарарин И.А., Бадрединов З.Г., Чубаров В.М. Эгиринавгит-кроссит-альбитовые метасоматиты офиолитового комплекса Хавывенской возвышенности Восточной Камчатки // Петрология. 1997. Т. 5. № 1. С. 99–108.

- Герман Л.Л., Мельникова С.А. Кристаллические сланцы полуострова Озерного (восточное побережье Камчатки) // Л.М.Парфенов, ред., Вопросы магматизма и тектоники Дальнего Востока. Владивосток, 1975. С. 3–6.
- Leake B.E. Nomenclature of amphiboles // Canad. Mineral. 1978. V. 16. No 4. P. 501–520.
- 32. Кориковский С.П. Изменение состава мусковитфенгитовых слюд при метаморфизме // И.П.Иванов, ред., Фазовые равновесия и процессы минералообразования. Очерки физико-химической петрологии. Вып. Ш. М.: Наука, 1973. С. 71–95.
- Peccerillo A., Taylor S.R. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, Northern Turkey // Contrib. Mineral. and Petrol. 1976. V. 58. № 1. P. 63–81.
- 34. Волынец О.Н., Пополитов Э.И., Патока М.Г. и др. Две серии лав повышенной щелочности в позднекайнозойской вулканической зоне Срединного хребта Камчатки // ДАН СССР. 1984. Т. 274. № 1. С. 1185–1188.
- Кузьмин М.И. Геохимия магматических пород фанерозойских подвижных поясов. Новосибирск: Наука, 1985. 200 с.
- Геохимия мезозойских латитов Забайкалья / Под ред. О.М.Глазунова. Новосибирск: Наука, 1984. 215 с.
- 37. Флеров Г.Б., Федоров П.И., Чурикова Т.Г. Геохимия позднемеловых-палеогеновых калиевых пород ранней стадии развития Камчатской островной дуги // Петрология. 2001. Т. 9. № 2. С. 189–208.
- 38. Волынец О.Н., Антипин В.С., Перепелов А.Б. и др. Редкие земли в позднекайнозойских высококалиевых вулканических породах Камчатки // Л.В.Таусон, ред., Геохимия вулканитов различных геодинамических обстановок. Новосибирск: Наука, 1986. С. 149–165.
- Sun S.-S. and McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Saunders A.D. and Norry M.J. (eds.), Magmatism in the ocean basins. Oxford: Geol. Soc. Spec. Publ. (London). № 42. 1989. P. 313– 345.
- 40. *McDonough W.F.*, *Sun S.-S.* The composition of the Earth // Chemical Geol. 1995. V. 120. № 3–4. P. 223–253.
- 41. *Ellam R.M. and Hawkesworth C.J.* Elemental and isotopic variations in subduction related basalts: evidence for a three component model // Contrib. Mineral. and Petrol. 1988. V. 98. № 1. P. 72–80.
- 42. White W.M. and Patchett J. Hf-Nd-Sr isotopes and incompatible element abundances in island arcs: implications for magma origin and crust-mantle evolution // Earth Planet. Sci. Lett. 1984. V. 67. № 2. P. 167–185.
- 43. Zindler A., Hart S. Chemical geodynamics // Ann. Rev. Earth Planet. Sci. 1986. V. 14. № 2. P. 493–571.
- 44. Великославинский С.Д., Глебовицкий В.А. Новая дискриминантная диаграмма для классификации островодужных и континентальных базальтов на основе петрохимических данных // ДАН. 2005. Т. 401. № 2. С. 213–216.
- 45. Федоров П.И., Филатова Н.И. Геохимия и петрология позднемеловых-кайнозойских базальтов зон

растяжения на континентальной окраине Северо-Востока Азии // Геохимия. 1999. № 2. С. 115–132.

- 46. Филатова Н.И. Магматические источники окраинных морей: Сравнение магматизма Японского моря и других бассейнов запада Тихого океана // ДАН. 2003. Т. 389. № 1. С. 88–94.
- Зинкевич В.П., Рихтер А.В., Фугзан М.М.⁴⁰Аг/³⁹Агдатирование метаморфических пород Восточной Камчатки // ДАН. 1993. Т. 333. № 4. С. 477–480.
- 48. Зоненшайн Л.П., Кузьмин М.И, Натапов Л.М. Тектоника литосферных плит территории СССР. М.: Наука, 1990. Кн. 1, 327 с. Кн. 2, 334 с.
- 49. Меланхолина Е.Н. Тектоника Северо-Западной Пацифики: соотношение структур океана и континентальной окраины. М.: Наука, 1988. 216 с. (Труды ГИН АН СССР; Вып. 434).
- Парфенов Л.М., Натапов Л.М., Соколов С.Д. и др. Террейны и аккреционная тектоника Северо-Востока Азии // Геотектоника. 1993. № 1. С. 68–78.
- Тектоническая карта Охотоморского региона масштаба 1:2500000 с объяснительной запиской / Под ред. Н.А.Богданова, В.Е.Хаина. М.: ИЛ РАН, 2000. 193 с.
- 52. Константиновская Е.А. Камчатское позднемеловое окраинное море // Литология и полезные ископаемые. 1997. № 1. С. 58–73.
- 53. Константиновская Е.А. Тектоника восточных окраин Азии: структурное развитие и геодинамическое моделирование. М.: Научный мир, 2003. 224 с. (Труды ГИН РАН; Вып. 549).
- 54. Соловьев А.В., Шапиро М.Н., Гарвер Дж.И. и др. Формирование Восточно-Камчатской аккреционной призмы по данным трекового датирования цирконов из терригенных пород // Геология и Геофизика. 2004. Т. 45. № 11. С. 1292–1302.
- 55. Левашова Н.А. Кинематика позднемеловых и мелпалеогеновых энсиматических островных дуг Камчатки. Дисс. канд. геол.-минерал. наук. М.: ГИН РАН, 1999. 22 с.
- 56. Левашова Н.А., Шапиро М.Н. Палеомагнетизм верхнемеловых островодужных комплексов Срединного хребта Камчатки // Тихоокеанская геология. 1999. Т. 18. № 2. С. 65–75.
- 57. Бахтеев М.К., Беньямовский В.Н., Брагин Н.Ю. и др. Новые данные по стратиграфии мезозоя-кайнозоя Восточной Камчатки (Валагинский хребет) // Стратиграфия. Геологическая корреляция. 1994. Т. 2. № 6. С. 77–84.
- 58. Коваленко Д.В. Палеомагнетизм геологических комплексов Камчатки и Южной Корякии. Тектоническая и геофизическая интерпретация. М.: Научный мир, 2003. 256 с.
- 59. Соловьев А.В., Шапиро М.Н. Тектоническая эволюция Восточно-Камчатской аккреционной призмы по данным трекового датирования циркона из терригенных пород // Ю.В.Корякин, ред., Тектоника земной коры и мантии. Тектонические закономерности размещения полезных ископаемых. Материалы XXXVIII Тектонического совещания. Т. 2. М.: ГЕОС, 2005. С. 224–228.

- Флеров Г.Б., Колосков А.В. Щелочной базальтовый магматизм Центральной Камчатки. М.: Наука, 1976. 147 с.
- Селиверстов В.А. Офиолиты Восточной Камчатки // Т.И.Фролова, В.А.Ермаков, ред., Петрологические исследования базитов островных дуг. М.: ИФЗ АН СССР, 1978. С. 177–239.
- 62. Селиверстов В.А., Колосков А.В., Чубаров. В.М. Лампроитоподобные калиевые щелочно-ультраосновные породы Валагинского хребта, Восточная Камчатка // Петрология. 1994. Т. 2. № 2. С. 197–213.
- 63. *Марковский Б.А., Ротман В.К.* О геосинклинальных меймечитах Камчатки // ДАН СССР. 1971. Т. 196. № 3. С. 675–678.
- 64. Говоров И.Н., Бадрединов З.Г., Дардыкина Л.Н. и др. Ультраосновные вулканические породы шошонит-латитовой серии // ДАН СССР. 1990. Т. 310. № 2. С. 427–431.
- 65. Соболев А.В., Каменецкий В.С., Кононкова Н.Н. Новые данные по петрологии и геохимии ультрамафических вулканитов Валагинского хребта (Восточная Камчатка) // Геохимия. 1989. № 1. С. 1694–1709.