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Geochemistry of late Cenozoic lavas on Kunashir Island, Kurile Arc
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Abstract Middle Miocene to Quaternary lavas on Kunashir Island in the southern zone of
the Kurile Arc were examined for major, trace, and Sr-Nd-Pb isotope compositions. The
lavas range from basalt through to rhyolite and the mafic lavas show typical oceanic island
arc signatures without significant crustal or sub-continental lithosphere contamination.
The lavas exhibit across-arc variation, with increasingly greater fluid-immobile incompat-
ible element contents from the volcanic front to the rear-arc; this pattern, however, does
not apply to some other incompatible elements such as B, Sh, and halogens. All Sr—-Nd-Pb
isotope compositions reflect a depleted source with Indian Ocean mantle domain charac-
teristics. The Nd and Pb isotope ratios are radiogenic in the volcanic front, whereas Sr
isotope ratios are less radiogenic. These Nd isotope ratios covary with incompatible
element ratios such as Th/Nd and Nb/Zr, indicating involvement of a slab-derived sediment
component by addition of melt or supercritical fluid capable of mobilizing these high
field-strength elements and rare earth elements from the slab. Fluid mobile elements, such
as Ba, are also elevated in all basalt suites, suggesting involvement of slab fluid derived
from altered oceanic crust. The Kurile Arc lavas are thus affected both by slab sediment
and altered basaltic crust components. This magma plumbing system has been continu-
ously active from the Middle Miocene to the present.

Key words: across-arc variation, incompatible element, Indian Ocean mantle, Kurile Are,

late Cenozoie, Sr—Nd-Pb isotopes.

INTRODUCTION

Although numerous studies of arc magmatism
have been made, details of the initiation, develop-
ment, and establishment of subduction zone mag-
matism remain unsolved issues for many arcs
(Stern 2004). For example, arc initiation can only
be investigated in a limited number of arcs such as
the Izu-Bonin and Mariana systems (Stern &
Bloomer 1992; Ishizuka et al. 2006a). Back arc
basin (BAB) openings share a common feature in
the course of volcanic arc development (e.g. Stern
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& Bloomer 1992) and BAB opening related volca-
nism have also remained poorly investigated until
recent years (Taylor & Martinez 2003; Kelley et al.
2006).

The northeast Japan and Kurile Arcs developed
at the eastern margin of the Eurasia continent
(Fig. 1), and are associated with the BAB of the
Sea of Japan and the Kurile Basin, which formed
in the late Cenozoic (Tamaki et al. 1992; Kimura
1996; Baranov et al. 2002). These arcs have been
studied intensively in terms of BAB opening and
subsequent arc magmatism (Pouclet & Bellon
1992; Goto etal. 1995; Nakajima et al. 1995;
Okamura et al. 1995, 1998, 2005; Pouclet et al.
1994; Yoshida etal. 1995; Takagi etal. 1999;
Yoshida 2001; Shuto et al. 2004, 2006; Kimura &
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Fig. 1

Map (a) of Kurile Island Arc with (b) locations of Quaternary active volcanoes (after Bailey ef al. 1989). (c) Schematic geological map of Kunashir

Island (modified after Fedorchenko ef al. 1989) with location of Quaternary volcanic front (thick broken line). Open rectangles with numbers are sample
localities: 1, Kompressornii—Prasolova; 2, Prasolovo—Nazarovo; 3, Nazarovo—Lagunnoe Bay; 4, Ekaterina Volcano; 5, Filatova Bay; 6, Mostovaya—Filatova
Bay; 7, Lovtsova peninsula. Samples from these localities are shown in Table 1.

Yoshida 2006; Sato et al. 2007), because volcanic
rocks of these stages are exposed on land due to
subsequent uplift within the are. Across-arc
geochemical variation of these ares appears to
have developed since the Pliocene (Ryan et al.
1995; Yoshida et al. 1995; Yoshida 2001). Typical
magmatic ares with characteristic across-arc
geochemical variations (Gill 1981; Pearce &
Parkinson 1993; Peate & Pearce 1998) were
established in the early Quaternary (Shibata &
Nakamura 1997; Kimura & Yoshida 2006).
Although numerous geochronological and
geochemical data are available for the west Kurile
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(Hokkaido) and northeast Japan Ares, with the
exception of the Quaternary lavas (Bailey et al.
1989; Ishikawa & Tera 1997; Bindeman & Bailey
1999), the late Cenozoic lavas in the main part of
the Kurile Arc (between Kunashir and Kamchatka
Islands; Fig. 1b) have been poorly investigated.
Miocene to Quaternary volcanic rocks occur, but
the Miocene volcanics have not yet been subjected
to comprehensive petrological or geochemical
study. Existing studies are sparse. Geophysical,
geological, petrographic, and petrochemical
data in the Kurile Arc were first summarized by
Gorshkov (1967). Syvorotkin and Rusinova (1989)



pointed out the depleted nature of the late Pliocene
basalts, and related these to the formation of the
Kurile Basin.

Published trace element and isotopic data are
available only for limited Quaternary Volcanoes
and adjacent submarine volecanic rocks in the
Kurile Basin (Zhuravlev et al. 1985; Bailey et al.
1989; Ishikawa & Tera 1997; Bindeman & Bailey
1999; Martynov et al. 2005). Many of these studies
have dealt with limited or specific elements or iso-
topes, such as B, Nb, Sb, and B isotopes, and thus,
comprehensive datasets including major, trace,
and Sr-Nd-Pb isotope compositions are rare.
Moreover, the Kurile Arc is underlain by voleanic
rocks dating back to the middle Miocene, and the
geochemistry of these rocks is very poorly known.
These older volcanic rocks may have formed
during the opening of the BAB Kurile Basin
(Baranov et al. 2002), and the development history
of the basin may thus be similar to that in the
adjacent Hokkaido or northeast Japan Arcs. This
paper provides the first comprehensive set of
major, trace, and Sr-Nd-Pb isotope analyses of
the Miocene to Quaternary volcanic rocks on
Kunashir Island in the South Zone of the Kurile
Arc (Fig.1b), and discusses the magmatic arc
origin.

GEOLOGICAL BACKGROUND

The Kurile Arc forms part of the geodynamic
system where the Pacific Plate subducts beneath
the North American Plate. The Kurile Arc consists
of the Kurile-Kamchatka Trench, the Big Kurile
voleanic chain, and the Kurile Basin in the rear-arc
(Fig. 1Db).

Formation of the Kurile voleanic chain began in
the Early Miocene or in the Oligocene. The total
length of the volcanic zone exceeds 1150 km, and
its width ranges from 100 to 200 km. The depth of
the submerged oceanic Pacific Plate slab beneath
the volcanic chain varies between 94.2 km for
North Kurile and 92 km for South Kurile (Syra-
cuse & Albers 2006). The thickness of the crust
varies only slightly along the are, being 28-33 km
in the South Zone, 25-30 km in the central zone,
and 32-36 km in the North Zone (Zlobin et al.
1987). The presence of abundant metamorphic
rock xenoliths (plagioclase—pyroxene granulites,
amphibolite, hornfels, different types of schists) in
the Quaternary basalts provides evidence for the
formation of the Kurile Arc on a continental crust
(Fedorchenko et al. 1989).
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The Kurile Basin was formed by back-arc
spreading (Baranov ef al. 2002). On the basis of
heat flow data, basement depth, and seismostrati-
graphy, the basin is thought to have formed in
Early Oligocene to Middle Miocene time (32—
15 Ma) (Baranov et al. 2002). Although spreading
switched to compression since the early Pliocene,
the magmatic process in the Kurile Basin remains
active until present time. This is evidenced by high
heat flow (up to 105 mW/m?) and the presence of
Quaternary (0.84-1.07 Ma) submarine volcanoes in
the eastern Kurile Basin (Tararin ef al. 2000;
Baranov et al. 2002).

STRATIGRAPHY OF VOLCANIC ROCKS ON
KUNASHIR ISLAND

As outlined above, volecanic activity on the
Kurile Islands began in the Early Miocene or Oli-
gocene. The activity produced four volcanigenic
chronological units: the Greentuff Formation
(Middle Miocene), Volecanic—Diatomaceous—Chert
Formation (Late Miocene), Basaltic Formation
(Pliocene), and Andesitic Formation (Quaternary)
(Piskunov 1987).

The Greentuff Formation consists of volcani-
genic materials with a total thickness of about
4000 m. On Kunashir Island (Fig. 1c) this forma-
tion is represented by the Kunashirskaya and
Lovtsovskaya Members (shown as Early-Middle
Miocene in Fig. 1¢). The Kunashirskaya Member
is essentially volcanigenic in nature, consisting of
voleanic breccias of basaltie, intermediate, and
felsic composition, with interbeds or lenses of tuffs,
voleanigenic sandstones, and occasional conglom-
erates. The Lovtsovskaya Member is about 1500 m
thick. Volcanigenic conglomerates and breccias
alternating with siltstones and poorly sorted sand-
stones form the base of the member. Rhythmie
interbedding of tuffs, sandstones, siltstones, and,
to a lesser extent, tuff-diatomites are observed.

The Volcanic-Diatomaceous—Chert Formation
on Kunashir Island (shown as Late Miocene-
Pliocene in Fig. 1c) is represented by the Alekhin-
skaya and Golovninskaya Members (Piskunov
1987). These have a total thickness of about
1500 m, and consist of basal conglomerates and
conglomerate-breccias. Layered beds composed
of 0.2- to 4-m-thick andesite or dacite tuffs, Voleca-
nogenic sandstones, breccias, and diatomites and
siltstones overlie the basal conglomerates.

The Basaltic Formation occurs almost on all
islands including Kunashir. On Kunashir Island the
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formation is represented by strata consisting of
lava flows of 5 to 50 m thick in basaltic, basaltic
andesite, and andesite compositions (shown as
Pliocene in Fig. 1c). These lavas alternate with
tuffs and reworked conglomerate to breccias and
sandstones. The total thickness of the formation is
about 400 m.

The Andesitic Formation forms the basement of
Quaternary to modern volcanic edifices (Piskunov
1987; shown as Early Quaternary and voleanic
cones in Fig. 1e¢). As its name implies, this forma-
tion is composed predominantly of andesites.

SAMPLES AND ANALYTICAL METHODS

Major and trace element compositions of 70
samples were determined by X-ray fluorescence
spectrometry (XRF) using glass disks prepared
with an alkali flux. Powdered samples were ignited
in a muffle furnace for three hours at 1000°C to
obtain loss on ignition (LOI). The alkali flux used
is a mixture of lithium tetraborate and lithium
metaborate with a mixing ratio of 4:1. The glass
disks were prepared by mixing 1.8 g of sample
powder and 3.6 g of the alkali flux before fusion in
an automated bead sampler (Kimura & Yamada
1996). The resulting glass disks were analyzed for
10 major elements and 14 trace elements using
a Rigaku RIX 2000 spectrometer at Shimane
University (Matsue, Shimane, Japan). Analytical
uncertainties by XRF are less than 2% for all
major elements with concentrations greater than
1wt% and less than 10% for most of the trace
elements with concentrations greater than 5 ppm
(Kimura & Yamada 1996). The XRF and LOI
results are presented in Table 1.

Sixteen selected samples were analyzed for
additional trace and ultra-trace elements using
solution-based inductively coupled plasma-mass
spectrometry (ICP-MS) (Kimura et al. 1995). The
ICP-MS used was a Thermo Elemental VG PQ3
at Shimane University. Analytical precision for the
ICP-MS analysis is less than 2% for most elements
with concentrations greater than 1ppm, and
external accuracy is better than 6%, based on rep-
licate analyses of JB-1 and JB-2 basalt standards
provided by the Geological Survey of Japan
(Kimura et al. 1995).

Sr, Nd, and Pb isotope analyses of 12 basaltic
rocks were made at Shimane University using a
multiple-collector ICP-MS (Thermo Elemental VG
Plasma 54). The reagents used were ultra-pure
hydrofluorie, nitric, hydrochloric, and hydrobro-
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mic acids. Element separation procedures for Sr,
Nd, and Pb follow Iizumi et al. (1994, 1995) and
Kimura et al. (2003). Standard samples analyzed
with the unknowns yielded the isotope ratios
81Sr/*6Sr = 0.702151 + 0.000015 for SRM 987
and 0.703796 = 0.000014 for JB-2; “*Nd/**Nd =
0.511853 + 0.000010 for La Jolla and #Nd/
HINd = 0.513097 + 0.000010 for JB-2; 2*Pb/
2MPh = 16.9412 = 0.0008, Z"Pb/**Pb = 15.4996 =
0.0011, and *®Pb/*Pb =36.7252 = 0.0026 for
SRM981; and  *°Pb/*"Pb = 18.3447 = 0.0008,
D"Ph/A"Ph = 15.5660 + 0.0008, and Z*Pb/"Pb =
38.2866 = 0.0031 for JB-2. Analytical precisions
for the unknowns are similar to those for the
standards. Trace element and isotope data are
given in Table 2.

MAJOR AND TRACE ELEMENT CHARACTERISTICS

According to geological observations (Baranov
et al. 2002), lavas from the Miocene or Pliocene
strata are subaqueous eruptives. Some exhibit
high LOI, suggesting alteration (Table 1), but
most have LOI less than 3 wt%. The possible
effects of alteration were also assessed by examin-
ing Na;O/K;0 ratios. All but four samples had
NayO/K20 less than 20 (Table 1), indicating that
alkali earth element re-mobilization was minimal
for the low NaysO/K;0 samples (Miyashiro 1974).
No systematic correlation between LOI and fluid
mobile elements such as K;O, Rb, and Ba is
evident (not shown). We therefore conclude that
re-mobilization of elements is minimal in most of
the subaqueous samples. Consequently, hereafter
we use all elements in examination of across-arc
variation. However, a more stringent choice of ele-
ments has been used for examination of magma
sources in later sections.

We have examined across the arc variation of the
volcanic rocks in different ages. The present day
position of the Wadati-Benioff zone is estimated to
lie at a depth of about 92 km beneath the volcanic
front of South Kurile (Syracuse & Albers 2006) and
the depth contours are parallel to the elongation
axis of Kunashir Island. However, it is not possible
to determine the depths of the Wadati-Benioff
zone in the geological past. Therefore, we classify
lava samples older than Quaternary based on their
physiographical distribution. The lava samples col-
lected from the forearc side of the Quaternary
voleanic front are classified as volcanic front (VF)
samples whereas the others are classified as rear-
arc (RA) samples (VF/RA shown in Fig. 1¢). These
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classification criteria are used throughout this
paper. The VF/RA variation in the Quaternary
lava is unclear in the case of Kunashir because the
width of the volcanic arc is narrower than that in
the North Zone (fig. 1 of Ishikawa & Tera 1997).
One early Quaternary sample is from the RA area
(locality 3 in Fig. 1c). However, it possesses clear
VF features along with other Quaternary lavas as
shown in the later sections. However, VF/RA
variation occurs in the older Kunashir lavas;
therefore, we apply the VF/RA distinction in this
paper.

In terms of NayO + K;0 vs SiO, (Fig. 2a), most
of the Kunashir lavas are basalt to andesite, with
lesser amounts of dacite and rhyolite; all are clas-
sified as sub-alkaline (Le Maitre et al. 1989). The
VF lavas of all ages tend to plot in the lower total
alkali region, although there is slight overlap
between the VF and RA fields. All but one of the
Quaternary lavas examined in this study are
limited to the VF suite, and all fall in the lower
sub-alkali region, which also includes one RA
sample. In this meaning, there is no significant
across-arc variation found in the Quaternary. All
the Middle and Upper Miocene and Pliocene VF
lavas fall in the same low alkali field as the Quater-
nary VF lavas, so that total alkalis along the VF
area remain unchanged with time. Total alkali con-
tents of the Miocene to Pliocene RA lavas gener-
ally plot near the sub-alkalic to alkalic transition,
although one Pliocene RA lava has a low value.

Levels of K50 in Kunashir lavas range continu-
ously from low-K20 to medium-K;0 varieties. The
Middle Miocene, Upper Miocene, and Pliocene
lavas show broad across-arc variation with K0
contents increasing to the RA. Samples from VF
plot in the low-K field, whereas those from the RA
fall in the high low-K to low medium-K fields (Le
Maitre et al. 1989; Fig. 2b). The Quaternary lavas
from our collection are all characterized by low
K content similar to total alkalis. Such across-
arc variation in KyO is comparable to variations
observed elsewhere in the Kurile Arc ranging from
almost zero up to greater than 2 wt% (Ryan et al.
1995; Bailey 1996). In contrast, the lavas from
North Hokkaido in Miocene to Pliocene ages show
no systematic across-arc variation in KO or
Naz0 + K0; all of these have an RA affinity of
Kunashir lavas of the same ages (F'ig. 2).

The Middle Miocene, Upper Miocene, Pliocene
lavas from Kunashir Island vary widely in MgO
content (Fig. 3a). The Middle Miocene lavas have
the highest MgO, up to 12.5 wt%. MgO contents
fall steeply in basalt to basaltic andesite com-

Geochemistry of Kunashir lavas 9
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lavas (Shuto et al. 2004) is also shown. RA, rear-arc; VF, volcanic front;
PI-BA: picritic basalt; BA, basalt; BA-AN, basaltic andesite; AN, andes-
ite; DA-RH, rhyo-dacite; RH, rhyolite. Open symbols, RA; closed
symbols, VF. VF-RA criteria are based on physiographical distribution
of the lava samples relative to the Quaternary volcanic front ling shown
in Fig. 1c.

positions with increasing SiOs. The rocks from
North Hokkaido show less variation overall, but
maximum contents also reach 12.5 wt%. TiOs con-
tents decrease with increasing SiO; and show no
clear contrast between the VF and the RA over a
time span of more than 15 Ma (Fig. 3b). The VF
lavas also have greater Al,O;, CaO, and FeO*, and
lesser NagO contents than the RA lavas (Fig. 3c—f).
The North Hokkaido lavas have similar contents of
Al,0s, but exhibit a vertical trend with slight varia-
tion in SiOs.
© 2009 The Authors
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Contents of Rb, Ba, and Zr are particularly low
in the VF lavas in Kunashir Island compared to
those in the RA lavas (Fig. 4a—c). Maximum con-
centrations of Rb and Ba in the RA lavas are about
two to three times greater than those in the VE,
indicating similar behavior with total alkalis or
K>0 among the major elements. In contrast to
these elements, Y abundances are identical
between the VF and RA, or between lavas of dif-
ferent age (Fig. 4e). The behavior of Sr is similar to
Al;O; (Fig. 4d). Chromium contents drop sharply
in basalt to basaltic andesite suites, and the trend
flattens out in andesite to dacite (Fig. 4f), showing
similar behavior to MgO. The concentrations of
elements such as Rb, Sr, and Cr in North Hok-
kaido lavas are greater than in Kunashir Island
(Fig. 4a,d,f).

RARE EARTH AND ULTRA-TRACE ELEMENTS

The Kunashir lavas are characterized by relative
enrichment of the primitive mantle (Sun &
McDonough 1989) in Cs, Rb, Ba, U, Pb and Sr and
low concentrations of Nb, Ta, and light rare earth
element (LREE) (Fig.5). Depletion in Nb and
Ta relative to REE, and Sr and Pb enrichment
are typical of subduction zone lavas, and all the
Kunashir basalts possess these characteristics.
The most depleted basalt occurs in the Quaternary
VF. The Pliocene VF lava also has similar element
concentrations, whereas the Pliocene RA basalts
have elevated elemental abundances with or
without Ba positive spikes. The Middle Miocene
and Upper Miocene RA lavas generally have
elevated trace element abundances, almost identi-
cal to the element concentrations of the Pliocene
RA lavas.

Sr-Nd-Pb ISOTOPES

The range in Sr isotope compositions of Kunashir
lavas is nearly identical for both the VF and RA,
with an ¥Sr/Sr range 0.7033-0.7037 (Table 2;
Fig. 6a). Three Middle Miocene lavas are excep-
tions, with 8"Sr/*Sr > 0.7043. These differing ratios
may be due to seawater alteration judging from
subaqueous emplacement and subsequent alter-
ation (see LOI in Table 1). The same pattern of
distribution of Sr and Nd isotopes is seen for
samples from North Hokkaido. The Quaternary
Kunashir basalts have slightly radiogenic *Nd/
INd compared to other basalts (Fig. 6a). The Sr

Geochemistry of Kunashir lovas 11

and Nd isotope compositions are similar to those
reported from the Indian Ocean mid-oceanic ridge
basalts (MORBs) rather than the Pacific MORBs
(Fig. 6a).

Isotope ratio plots such as 2"Pb/2%Pb vs 2°Phb/
204Ph, 2%Pb/2"Ph vs 2Ph/MPhb (Fig. 6b,d) plot to
the radiogenic side of the Indian MORB fields,
distinet from ratios for Pacific MORB (Hochs-
taedter et al. 2001; not shown) The VF basalts plot
at the most radiogenic end, whereas RA basalts
are less radiogenic. This is maintained over the
time range from Middle Miocene to the Quater-
nary age and the overall trend forms linear arrays
(Fig. 6¢,d). The same is true in the **Nd/*Nd
vs 2Ph/2MPhb plot (Fig. 6¢) suggesting a binary
mixing covariation of Nd and Pb in magma
genesis.

Overall, across-arc variation found in the lavas
on Kunashir Island compares well with the across-
arc geochemical variation reported in the Kurile
Arc (Ryan et al. 1995; Bailey 1996; Bindeman &
Bailey 1999). The across-arc variation includes an
increase in total alkalis, K, Rb, Ba, Zr, Nb, Ta, and
LREE to RA, whereas there is a decrease to RA
in Pb/Ce, Sr/Nd, suggesting overall enrichment
in large ion lithophile elements (LILEs) and high
field strength elements (HFSEs) to the RA with
some exceptions such as Pb and Sr. Such variations
are commonly found in the Quaternary Kurile
lavas (Ryan et al. 1995; Bailey 1996; Bindeman &
Bailey 1999) indicating that Pb and Sr behave simi-
larly to B and Sb as suggested by previous works.
An increase in **Nd/*Nd to the VF is also a
common feature (Bindeman & Bailey 1999); Sr iso-
topes did not covary, perhaps due to seawater
alteration in the case of the old subaqueous
Kunashir lavas (F'ig. 6a).

The RA feature is more prominent in the Middle
Miocene lavas on Kunashir, VF/RA variation was
apparent in Upper Miocene and Pliocene lavas as
opposed to the Quaternary lavas, which possess a
VF feature alone. There appears to have been a
gross temporal development in the lava geochem-
istry of Kunashir; however, differences may be due
to sampling bias originating from limited preser-
vation of old fresh lavas. We hereafter examine the
geochemical variation and its origin.

DISCUSSION

NEGLIGIBLE EFFECT OF CRUSTAL CONTAMINATION
Crustal or subcontinental lithosphere (SCLM)
contamination has been considered by many

© 2009 The Authors
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researchers to be an important factor for the
geochemical diversity of island are voleanic rocks
(Gill 1981; Kersting et al. 1996; Kimura & Yoshida
2006); however, this factor seems to be insignifi-
cant in the South Zone Kurile basalts. On the
USNd/*Nd vs SiO, diagram (Fig. 7), the Quater-
nary VF lavas from Kunashir Island plot on a hori-
zontal line, increasing silica without change in Nd
isotope ratios. This suggests no contamination
during fractional crystallization (FC trend in
Fig. 7), whereas basalts to basaltic andesites in the
Pliocene and the Miocene Kunashir samples plot
on a steeply vertical trend (Fig. 7). If progressive
contamination affects lava chemistry during frac-
tional crystallization, then the trend should be
diagonal as shown by the AFC trend (Fig.7).
However, the vertical trend in the RA lavas would
suggest contamination of less radiogenic Nd in
the basalt source (Source Contamination trend in
Fig. 7; also see discussions in Shuto et al. 2004 for
Hokkaido).

ROLE OF SUBDUCTION COMPONENT

High LILE contents with HFSE depletion
suggest the involvement of subduction compo-
nents in the genesis of lavas on Kurile Islands
(Ryan et al. 1995; Bindeman & Bailey 1999). Sub-
duction fluid appears to have a predominant role in
magma genesis, with sources constituting more
than 95% of the altered ocean crust and less than
5% constituting oceanic sediment. (Ishikawa &
Tera 1997).

Across the Kurile Are, geochemical variations
have been the key to interpreting the role of
slab inputs. The fundamental characteristics are

Geochemistry of Kunashir lovas 13

increasing from the VF to the RA in LILEs (K,
Rb, Ba, partially Sr and Cs), REEs (La, Ce, Pr,
Nd, Sm, Eu, Gd, Th, Dy, Ho, Er, Tm, Yh, Lu) and
HFSEs (Th, U, Nb, Ta, Zr, Hf, partially Y and Ti)
(Ryan et al. 1995; Bindeman & Bailey 1999; this
paper). An inverse relationship is seen in volatile
elements such as B and Pb, and halogens such as F
and CI (Ryan et al. 1995; Bindeman & Bailey 1999),
which is best displayed by B/Nb (Ishikawa & Tera
1997). A similar relationship is seen in this study,
as Pb/Ce decreases from the VF to the RA (Fig. 5
shown by Pb spike relative to Ce). The overall
increase in incompatible elements has been inter-
preted as a result of a lowering degree of partial
melting to the RA. However, the decrease of highly
volatile elements is interpreted as a result of the
decrease in fluid flux liberated from the slab from
the VF to the RA (Ishikawa & Nakamura 1994;
Ryan et al. 1995; Bindeman & Bailey 1999).

Covariation between isotopes and element
abundances is also common. Decreasing radio-
genic Nd with increasing radiogenic Sr to the RA
(Bindeman & Bailey 1999) or increasing 8"'B with
increasing radiogenic Sr to the RA (Ishikawa &
Tera 1997) have been reported. Our isotopic data
reproduced increasing radiogenic Nd to the VF
(Fig. 6a), but failed to reproduce Sr behavior due
to seawater alteration in old samples (see above).
Our Pb isotope data indicate an increase in radio-
genic Pb in VF lavas but less radiogenic Pb in the
RA lavas. This appears to contradict a previous
study (Bindeman & Bailey 1999); however, their
work did not specifically address across-are varia-
tion in Pb isotopes (see their figure 7). Our Pb
isotope ratios, in contrast, correlate linearly to the
Nd isotope ratios (Fig. 6b), and thus, clearly show
across-arc variation.

There are multiple controlling factors on the are
basalt genesis, although the contribution of slab
flux is of common importance. In the case of the
Kurile Are, the contribution of slab derived fluid is
ascribed by consensus, as enrichment in highly
fluid-mobile elements including Pb and B. Their
strong slab derived isotope signatures (high §'B
and radiogenic Pb) are clearly correlated to the
element enrichment in VF lavas. An increase in
alkalinity correlates well to the LILE, HFSE, and
REE enrichment (see above sections), indicating
decreases in the degree of melting to the RA
although the element ratios or abundances do not
always follow the melting degree scheme (e.g.
Kimura & Yoshida 2006).

The reasons for high abundance of incompat-
ible elements in the RA lavas of the Kurile Arc
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Journal compilation © 2009 Blackwell Publishing Asia Pty Ltd



14 A Y Martynov et al.

05132 [ 4 T T T T 15.56
| Pacific MORB
15.54 -
0.5131 | ®
A= a 1552
Z & o
3 o g
= 05130 %1650 |-
pd = 1 a
b [
= o) S 1548 [ , §
0.5129 T Indian MORB §
+ = -
L - 15.48 o
e
0.5128 L L I 1 l 15.44 L L
0.702 0.703 0.704 0.705 17.8 18.0 18.2 18.4 18.
8751/ % st 206ppy/ 204py,
0.5132 T 38.6 T T T T T T T
384 |
0.5131
= L =
= L/~ Indian MORB T %82
i 2
‘g 0.5130 | S 380 |
g - A 2
- 0O & 378 |
0.5129
R 76 |
0.5128 . . \ , , . 374 |
178 17.9 180 181 182 183 184 185 17.8 18.0 182 18.4 186
208pp, 204pp 206pp/ 204py,

O Middle Miocene(RA)[] Upper Miocene(RA) £\ Pliocene(RA) <> Quaternary(RA) X Quatemary N-Hokkaido
@ Middle Miocene(VF) ] Upper Miocene(VF) & Pliocene(VF) 4 Quaternary(VF) + Mio-Pliocene N-Hokkaido

Fig. 6 Isotope ratio diagrams showing (a) &Sr/%Sr vs "Nd/"Nd, (b) 26Pb/2%Pb vs 2"Pb/2™Ph (c) 2®Pb/2%Ph vs "SNd/"™Nd, (d) 25Pb/*™Ph vs
208pPp/2%4Ph for lavas from Kunashir Island. Data source for Pacific and Indian MORB in (a,c) (Kimura & Yoshida 2006); Pacific MORB in (b,d) (Taylor &
Nesbitt 1998), Indian MORB in (b,d) (Durpé & Allegre 1983; Hamelin & Allegre 1985; Rehkdmper & Hofmann 1997). RA, rear-arc; VF, volcanic front.

basalt are disputed. This geochemical feature may
originate: (i) simply from low degrees of melting;
(ii) from the contribution of deep fluids released
by the breakdown of particular hydrous mineral
phases such as phlogopite or phengite in metaso-
matized mantle or dehydrated slab; or (iii) from
the contribution of slab melt (Ryan et al. 1995;
Ishikawa & Tera 1997). The contribution of slab
components is also a source of debate; whether
sediment (SED) or MORB altered oceanic crust
(AOC) is the major contributor of the slab fluid or
melt and at what ratios. For example, a large role
of slab derived fluid to the VF has been suggested
by B-Sr isotope systematics (Ishikawa & Tera
1997) with 95% fluid derived from AOC plus 5%
from SED components.

We here examine geochemical discrimination
diagrams that have been applied to reveal contri-
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butions of altered AOC and SED fluids as well as
SED melts or bulk sediments in arc magma
genesis. These methods are based on different
behaviors of elements during slab dehydration or
melting (Kogiso et al. 1997; Johnson & Plank
1999; Kessel et al. 2005) combined with elemental
abundances or radiogenic isotopes (Plank &
Langmuir 1993; Hauff etal. 2003; Kimura &
Yoshida 2006).

We first examine the diagram '©Nd/**Nd vs
Th/Nd (Fig.8). The AOC and AOC fluid end
members used are the same with those discussed
in Ishizuka et al. (2006b). Sediment fluid and sedi-
ment melt compositions are calculated based on
bulk composition of the SED column subducting
into the Kurile and Japan Island Arc systems
(Plank & Langmuir 1998). The bulk distribution
coefficients between sediment and fluid (700°C)
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and sediment and melt (900°C) are from Johnson
and Plank (1999). There are significant uncertain-
ties in the evaluation of subcontinental mantle
chemical composition beneath the Kurile Arc. We
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have followed the method proposed by Tatsumi
(2003) and assume that the mantle wedge compo-
sition is similar to depleted mantle composition,
which should have a similar Nd isotope ratio and
Th/Nd as AOC. Th and Nd are highly incompatible
elements and the Th/Nd ratio is not significantly
affected by melting or fractional crystallization
processes (e.g. Pertermann et al. 2004) even in
hydrous melting conditions (Green et al. 2000).
They are both fluid-immobile (e.g. Johnson &
Plank 1999) and Th is more readily incorporated
into sediment melt than Nd because of the high
concentration of Th in sediment. Consequently,
Th/Nd can be used diagnostically to distinguish
between hydrous fluid and melt involvement in
basalt magma genesis in subduction zones. (e.g.
Plank & Langmuir 1993). On the ¥Nd/*Nd vs
Th/Nd diagram (Fig. 8) the VF samples lie on a
mixing line between AOC and SED fluids. Evi-
dence of a relatively small contribution from SED
fluid is consistent with the conclusion based on
B-Sr isotope systematics reported by Ishikawa
and Tera (1997). The same mixture proportion
(~95% fluid derived from AOC plus ~5% from SED
components) was calculated for the frontal arc
basalt lavas of the Izu-Bonin Arc (Straub et al.
2004).

On the same diagram, the RA lavas are charac-
terized by higher Th/Nd with lower Nd/**Nd,
forming a flat array (Fig. 8). The variation can be
accounted for if a small proportion of SED melt
contributed to the source along with AOC and
SED fluids. Note that we used all VF/RA lavas
analyzed, including Middle Miocene to Quaternary
lavas, because all have clear VF/RA characteristics
comparable to other Quaternary Kurile lavas.

Such a relationship is also observed in a Nd
isotope vs Nb/Zr plot, on which similar quasilinear
correlations are evident in VF (vertical) and in RA
(orthogonal) (Fig. 9). Nb/Zris a HFSE ratio that is
relatively conservative against low temperature
and seawater alteration, and thus, is suitable for
magma source examination. This element ratio can
be fractionated by partial melting of mantle peri-
dotite when garnet is involved (Green 1995).
However, the partition coefficient driven element
fractionation can not correlate to Nd isotope
ratios. Moreover, any low pressure slab fluids can
not transfer the low Nb/Zr character from SED to
the mantle melting region, due to the very low
mobility of these elements in fluid (Kessel et al.
2005). Instead, slab melts or high-pressure super-
critical fluids can transfer the low Nb/Ta charac-
teristics from the slab source, due to high element
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solubility in the melts/supercritical fluids (Aizawa
et al. 2004; Kessel et al. 2005). In addition, Nd
is also effectively transferred by the melt/
supercritical fluids (Kessel et al. 2005). Correlation
between *Nd/Nd and Nb/Zr (Fig.9) strongly
suggests that involvement of a slab SED compo-
nent greatly affected the RA basalt source, as has
been suggested by previous works in the Izu and
northeast Japan Arcs (Ishizuka etal. 2006b;
Kimura & Yoshida 2006). This diagram also sup-
ports the above conclusion that the slab compo-
nents influencing the Kurile lavas appear to be a
mixture between AOC fluid and SED fluid/melt
(Fig. 8).

We prefer an explanation involving the addition
of slab SED melt-supercritical fluid in the RA
basalt source (e.g. Ishizuka et al. 2006b, 2007)
rather than the transfer of slab components via
fluids captured in mica minerals (phengite or phlo-
gopite) and later release by a pressure dependent
breakdown of these phases beneath the RA. These
minerals can retain K, Rb, and Ba but not Nd and
Th (Green et al. 2000; Green & Adam 2003). Cova-
riation between Nd isotope and HFSEs and Th
is better explained by melting of slab SED com-
ponent at RA depth (perhaps > 150 km =5 GPa).
Alternatively, a high-pressure fluid can behave
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supercritically and dissolve large amount of ions
including HFSEs and REEs (Kessel et al. 2005).
Therefore, it is possible the SED melt component
can also be supplied by such form.

The remaining issue is the positive correlation
between Pb and Nd isotopes (F'ig. 6b). An increase
in SED melt component can decrease radiogenic
Nd but would increase radiogenic Pb as well. This
appears to be inconsistent with the fact that more
radiogenic Pb in found in VF lavas. The correlation
between Pb and Nd isotopes, however, can be
explained by a greater contribution of mantle
melts at smaller degrees of partial melting
beneath RA. This may be evidenced by the non-
significant spike in Pb relative to Nd in the RA
basalts, suggesting less Pb addition from the slab
component to the RA basalt source (Fig.5).
According to this, a lower degree of melting in the
RA mantle should also be one cause of the high
incompatible element abundances in the RA lavas
and partially control isotope behaviors in the
Kurile Arc system. A mass balance approach will
solve the issue; however, this is beyond the scope of
this paper.

CONCLUSIONS

Middle Miocene, Upper Miocene, Pliocene, and
Quaternary lavas from Kunashir Island in the
South Zone of the Kurile Arc show characteristic
across-arc geochemical variations. The Kunashir
lavas possess oceanic arc characteristics, and are
basically unaffected by enriched continental mate-
rials such as crust or SCLM. Incompatible trace
element and Sr-Nd-Pb isotope compositions
suggest that the VF and the RA lavas are affected
by both AOC and SED slab components, with
greater SED melt—supercritical fluid contribution
to the RA lavas. The SED slab component also
affects HFSE (e.g. Nb/Zr) in the lavas, indicating
transfer of the component from the slab via melt or
supercritical fluid. The effect of enriched SCLM
and continental materials is greater in the north-
east Japan Arc and is significant in northeastern
Hokkaido; however, this effect is not prominent on
Kunashir Island. This magma generation system
appears to have been maintained from the middle
Miocene through to the present with increasing
VF signature over the time. This provides an inter-
esting insight into the tectonic history of the Kurile
Basin BAB opening and development of the Kurile
Arec.
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