ГЕОХИМИЯ И ОСОБЕННОСТИ ФОРМИРОВАНИЯ ПОЗДНЕМЕЛОВЫХ-МИОЦЕНОВЫХ БАЗАЛЬТОВ ЮГА КОРЕЙСКОГО ПОЛУОСТРОВА

© 2006 г. Ю. А. Мартынов*, Д. У. Ли**, В. В. Голозубов*, С. В. Рассказов***

*Дальневосточный геологический институт Дальневосточного отделения РАН

690022 Владивосток, просп. 100-летия Владивостока, 159; e-mail: martynov@fegi.ru

**Kongju Nantional University, College of Natural Science Kongju, Korea; e-mail: cdpii@knu.kongju.ac.kr

***Институт земной коры Сибирского отделения РАН

664033 Иркутск, ул. Лермонтова, 128

Поступила в редакцию 15.09.2004 г.

На основании оригинальных и опубликованных данных показаны существенные, геологические и геохимические различия позднемеловых-палеогеновых и эоцен-среднемиоценовых вулканитов южной части Корейского полуострова. Пространственно разобщеные, те и другие отличаются пропорциями кислых и основных эффузивов. Базальты позднемелового-палеогенового времени являются типичными субдукционными образованиями – высокоглиноземистые, с высокими концентрациями крупноионных литофильных элементов (LILE) и Th, низкой титанистостью, низким уровнем содержания высокозарядных катионов (HFSE). Основные вулканиты миоценового возраста можно отнести к переходному геохимическому типу, сочетающему признаки типично субдукционных и внутриплитных магматитов. От субдукционных они отличаются более низкими концентрациями радиогенного стронция, калия, крупноионных литофильных элементов (Cs, Rb, Ba) и Th, но повышенными – MgO. Ni, Ti и тяжелых лантаноидов. Особенности поведения U, Ba, Rb, Ce, Th и ⁸⁷Sr/⁸⁶Sr в разновозрастных базальтах юга Корейского

Особенности поведения U, Ba, Rb, Ce, Th и °'Sr/²⁰Sr в разновозрастных базальтах юга Корейского полуострова свидетельствуют о том, что резкое изменение изотопно-геохимических характеристик основных эффузивов на границе позднего мела и налеогена связано главным образом с сокращением роли континентального осадочного материала в магмогенезисе. Последнее дает основание предполагать изменение векторов перемещения океанической и континентальной плит, с усилением сжимающих напряжений и, в конечном счете, с прекращением субдукции.

Данные, полученные авторами при изучении кайнозойского вулканизма юга Корейского полуострова, восточного Сихотэ-Алиня и предпринятый ими синтез литературных данных свидетельствуют о необходимости выделять, по крайней мере, 4 этапа тектонической перестройки восточной окраины Евразии – позднемеловой-палеогеновый, эоцен-олигоценовый, ранне- и средне миоценовый.

Кайнозой в современных тектонических моделях рассматривается как период тектонической перестройки континентальной окраины Евразии, важным результатом которой явилось раскрытие котловины Японского моря и формирование современной Японской островодужной системы. Большинство исследователей начало этих событий относит к среднему и позднему миоцену (20-12 млн. лет) [1, 2] и связывают с задуговым спредингом, перемещением субдукционной зоны по направлению к глубоководному желобу и внедрением в зону растяжения деплетированного астеносферного диапира. После прекращения масштабных растяжений, в позднем кайнозое (10-3 млн. лет), происходило формирование базальтовых плато, широко распространенных в Сихотэ-Алине, северо-восточном Китае, Корее и на юго-западе Японии.

Такой модели противоречат данные, полученные в последнее десятилетие при изучении позднемеловых - кайнозойских вулканогенных толщ юга Дальнего Востока России. История тектонической перестройки восточной окраины Евразии была, по-видимому, более сложная и длительная. Начиная, по крайней мере, с эоцена, формирование базальтоидных толщ на этой территории происходило после прекращения субдукции, на начальном этапе рифтогенеза [3, 4], связанного с активизацией трансформных разломов, разрывом субдуцирующей плиты и формированием так называемых "субдукционных окон" (slab-windows) [5]. Этот вывод во многом подтверждают и геологические данные, полученные нами при полевых и лабораторных исследований позднемеловогомиоценово-базальтового вулканизма южной части Корейского полуострова.

КРАТКАЯ ГЕОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА МЕЗО-КАЙНОЗОЙСКИХ ВУЛКАНОГЕННЫХ ТОЛЩ КОРЕЙСКОГО ПОЛУОСТРОВА

Начиная со средней юры (180–155 млн. лет), после коллизии континентальных блоков Сино-Корейского, Собоексон-Хинда и Хонсю, Корейский полуостров представлял собой стабильную кратонную территорию, не испытавшую какихлибо существенных ротационных или пространственных перемещений [1, 6 и др.]. Большая часть полуострова относится к Сино-Корейской параплатформе и лищь северо-восточная и северо-западная части входят в состав соответственно Сихотэ-Алинской и Катазиатской складчатых областей [7].

Вулканическая активность в пределах описываемой территории прослеживается с поздней юры (около 135 млн. лет), когда с началом субдукции океанической плиты Кула произошло заложение позднеюрского-раннемелового вулканического пояса Северной Кореи. В позднемеловое время, с началом субдукции Тихоокеанской плиты, в южной части Корейского полуострова (рис. 1) формируется Южнокорейско-Японский вулканический пояс - одно из звеньев цепи окраинно-континентальных вулканических поясов, протягивающихся вдоль восточной окраины Азиатского континента. К-Аг возраст вулканических пород колеблется от 79 до 57 млн. лет, причем вулканические центры более молодых эффузивов смещаются в южном направлении [7]. Нижние горизонты вулканического разреза представлены лавами и агломератовыми туфами базальтового состава, которые подстилаются и перекрываются туфогенными аргилитами [7]. Выше залегают базальты и андезито-базальты, перекрытые вулканогенными конгломератами и

Рис. 1. Схема размещения позднемеловых (1) и налеогси-миоценовых (2) вулканитов Кореи. По [7], с небольцими дополнениями.

игломератовыми туфами основного состава. Зазершают разрез андезиты, а затем дациты и риоииты. Суммарная мощность позднемеловых-патеогеновых вулканогенных образований депресии оценивается в 2000 метров [8], при мощности сислых вулканитов 1000–1500 м. Гомодромная юследовательность формирования пород и высосая объемная доля кислых эффузивов, является гипичной особенностью позднемелового вулкаизма южной части Корейского полуострова и, расюложенного севернее Восточно Сихотэ-Алинского вулканогена.

Эоцен – миоценовые, преимущественно основные вулканиты формируют на юге полуострова изолированные поля, в тылу позднемелового-патеогенового вулканического фронта (рис. 1). Среднезоценовый этап вулканизма (46-44 млн. тет) развит очень ограниченно. В пределах депэессии Поханг он представлен базальтовыми погоками и дайками основного состава северо-восточюго простирания [8]. Вплоть до начала миоцена наэлюдается перерыв магматической активности. Миоценовые вулканиты, развитые также в осювном в пределах депрессии Поханг, представлены экструзивными андезитами и потоками дацитов : возрастом 23-21 млн. лет, переслаивающимися с сонтинентальными кластическими породами [9]. Зышележащие отложения состоят из морских и сонтинентальных осадков с редкими потоками нав кислого и основного составов. К-Ar возраст базальтовых лав составляет 21-18 млн. лет. Зазершают разрез морские осадочные породы, пеэекрытые базальтами с абсолютным возрастом

13.6-15.2 млн. лет и прорванные фельзитовыми дайками [10].

МЕТОДЫ ИССЛЕДОВАНИЯ

Содержание петрогенных элементов определялось традиционным химическим методом в лабораториях Дальневосточного геологического института ДВО РАН (аналитик Шкодюк Л.В). Определения концентраций микроэлементов методом ICP-MS и K-Ar возрастов вулканических пород проводились в лаборатории изотопии и геохронологии Института земной коры СО РАН. Химическая подготовка проб элементного и изотопного анализов осуществлялась на основе бидистиллята глубинной воды оз. Байкал. В процессе пробоподготовки использовались двукратно очищенные на изотермических перегонках особо чистые кислоты. Плавиковая кислота очищалась в тефлоновых аппаратах, а вода, азотная и соляная кислоты – в кварцевых. Измерения методом ICP-MS проводились в Иркутском Центре коллективного пользования на масс-спектрометре VG Plasmaquad PQ2+. Калибровка прибора осуществлялась по международным стандартам BHVO-1, AGV-1 и BIR-1 с постоянным внутренним лабораторным контролем качества измерений пробой базанита U-94-5. Изотопные отношения стронция измерялись на масс-спектрометре "Finnigan MAT 262", принадлежащем Иркутскому центру коллективного пользования. В период измерений средние значения изотопного стандарта стронция NBS SRM 987 и стандарта горной породы JB-2 со-

Рис. 2. Классификационные диаграммы K₂O–SiO₂ для основных вулканических пород юга Корейского полуострова. *I* – позднемеловые-палеогеновые; 2 – раннеэоценовые; *3* – миоценовые. Знаки залитые черным – данные авторов; серые – литературные данные [6, 8–15].

ГЕОХИМИЯ № 6 2006

МАРТЫНОВ и др.

÷

	ky-10-00	ky-12-00	ky-13-00	ky-14-00	ky-20-00	ky-21-00	ky-23-00	ky-1-00	ky-2-00	
	Номер									
Қомпо- нент	[2	3	4	5	6	8	12	13	
	Возраст (млн. лет)									
	82*	82*	82*	78.50				19*	19*	
SiO ₂	58.98	53.44	58.77	57.22	50.17	63.68	51.67	50.20	49.73	
TiO ₂	0.60	0.80	0.70	0.86	1.27	0.69	1.52	1.40	1.20	
Al ₂ O ₃	16.56	17.50	17.70	17.36	18.69	15.69	18.49	18.24	18.81	
Fe ₂ O ₃	4.49	5.28	4.02	5.86	3.65	4.79	9.06	2.00	6.25	
FeO	0.57	3.46	1.52	1.59	5.00	t.70	1.91	3.95	0.08	
MnO	0.13	0.10	0.06	0.12	0.19	0.08	0.13	0.15	0.16	
MgO	2.92	4.22	3.10	2.01	5.25	0.53	2.13	4.64	5.91	
CaO	7.15	8.11	5.84	8.54	9.37	2.69	4.71	11.78	11.98	
Na_2O	3.08	3.02	4.10	2.53	3.11	5.14	5.89	2.84	2.46	
K ₂ O	2.80	2.45	2.19	1.90	0.59	2.42	1.33	0.74	0.58	
P ₂ O ₅	0.64	0.33	0.33	0.30	0.19	0.15	0.34	0.95	0.28	
LOI	1.62	1.46	1.11	1.10	1.55	1.91	2.34	2.17	2.08	
Total	99.54	100.35	99.70	99.60	99.87	99.51	99.69	99.40	99.78	
Rb	72.66	110.56	65.31	73.36	14.67	62.52	21.89	10.89	11.31	
Ba	1082.38	735.52	997.92	795.37	167.11	879.94	214.72	213.75	160.51	
Sr	622.22	688.20	815.83	748.87	458.10	538.10	1211.42	510.39	413.97	
Pb	18.77	16.65	16.12	14.69	5.03	7.79	7.79	7.44	5.86	
Ni	13.00	17.00	10.00	12.00	36.00	21.00	17.00	48.00	60.00	
Co	8.00	1.40	8.00	9.00	27.00	8.00	14.00	45.00	52.00	
Cr	12.00	36.00	13.00	19.00	68.00	64.00	8.00	30.00	59.00	
v	140.00	160.00	150.00	210.00	250.00	110.00	230.00	160.00	180.00	
Zr	159.91	97.61	141.24	157.91	127.97	58.94	91.67	159.01	122.58	
Hf	4.00	3.37	3.78	4.35	3.15	1.94	3.31	3.51	3.10	
La	41.76	32.17	44.39	32.50	11.70	22.76	30.77	13.46	11.35	
Ce	75.19	63.33	77.72	68.74	28.78	48.36	67.30	31.24	28.05	
Pr	9.07	7.17	9.87	8.68	3.71	5.20	8.17	4.35	3.72	
Nd	36.51	33.25	39.69	35.57	17.64	20.87	36.47	20.77	18.08	
Sm	6.62	5.54	7.81	6.97	4.46	3.80	7,33	5.00	4.72	
Eu	1.75	1.42	2.07	1.67	1.38	1.02	1.87	1.54	1.44	
Gd	5.39	3.59	6.78	4.40	4,54	2.96	6.03	5.33	4.90	
Tb	0.78	0.60	1.03	0.76	0.74	0.43	0.84	0.81	0.83	
Dy	4.30	3.37	5.37	3.78	4.83	2.19	4.39	5.00	5.04	
Ho	0.85	0.64	1.11	0.70	0.96	0.42	0.83	1.03	1.06	
Er	2.38	1.75	2.95	2.18	2.95	0.99	2.21	2.92	3.20	
Tm	0.36	0.23	0.50	0.38	0.46	0.19	0.34	0.47	0.50	
Yb	2.03	1.62	2.30	2.55	2.48	0.91	1.75	2.65	2.86	
Lu	0.31	0.29	0.36	0.34	0.41	0.14	0.25	0.41	0.43	
Nb	9.99	6.23	9.35	7.50	5.23	7.79	9.26	5.03	3.92	
Y	29.02	18.81	37.57	26.14	33.77	11.59	23.37	32.46	29.32	
Та	0.60	0.50	0.53	0.46	0.37	0.48	0.52	0.29	0.33	
Th	7.96	5.63	8.50	6.37	1.67	6.32	3.86	1.77	1.70	
Sc	15.54	22.79	13.23	20.89	34,18	10.95	19.20	28.95	34.39	
Ga	11.0	12.00	15.00	12.00	12.00	8.00	11.00	14.00	13.00	
Cs	1.20	2.43	1.85	0.78	1.08	1.08	0.57	0.45	0.93	
U	1.62	1.13	1.65	1.67	0.41	0.88	1.07	0.46	0.42	
Be	2.00	1.70	2.00	1,60	1.10	1.20	1.60	1.50	0.80	
B	6.00	13.00	7.00	11,00	13.00	93.00	96.00	9.00	9.00	
⁸ /Sr/ ⁸⁶ Sr		0.7099400		0.7086600	—		-	-		

Содержание петрогенных (мас. %) и микроэлементов (г/т) в представительных образцах основных вулканитов юга Корейского полуострова

ГЕОХИМИЯ № 6 2006

600

ГЕОХИМИЯ И ОСОБЕННОСТИ ФОРМИРОВАНИЯ

Окончание

	ky-3-00	ky-4-00	ky-5-00	ky-7-00	ky-8-00	ky-9-00	ky-15-00	ky-17-00	ky-18-00	
	Номер									
Компо-	14	15	16	17	18	19	20	21	22	
açıı ı	Возраст (млн. лет)									
	19*	19*	17.00	21.00	19*	19*	<u> </u>	19*	19*	
SiO ₂	48.38	59.91	47.85	50.10	50.14	49.00	50.03	52.44	51.88	
TiO ₂	1.30	0.70	1.96	1.46	1.30	1.04	1.78	1.40	1.40	
Al ₂ O ₃	18.79	17.06	17.40	17.09	17.39	18.22	17.16	16.54	17.78	
Fe ₂ O ₃	6.74	3.19	0.21	5.09	5.27	6.34	5.20	4.48	3.65	
FeO	1.11	1.60	5.70	1.85	1.72	1.92	6.31	5.82	6.34	
MnO	0.19	0.19	0.17	0.18	0.14	0.16	0,20	0.20	0.20	
MgO	5.44	3.21	8.41	5.92	5.93	5.54	4.33	4.55	4.77	
CaO	12.04	6.70	11.98	11.64	11.36	12.61	8.47	8.01	7.62	
Na ₂ O	4.00	4.13	2.58	2.50	2.31	2.70	3.22	3.36	3.46	
K ₂ O	0.36	1.96	1.26	0.94	0.90	0.90	1.16	1.08	1.06	
P_2O_5	0.38	0.46	0.35	0.59	0.35	0.62	0.26	0.22	0.21	
LOI	0.82	0.44	2.40	2.10	2.65	0.98	1.49	1.12	1.16	
Total	99.55	99.63	99.77	99.60	99.94	100.15	99.97	99.55	99.92	
Rb	17.55	41.24	31.13	32.22	24.09	14.28	19.51	23.74	21.42	
Ba	160.52	385.50	775.00	277.49	259.65	190.27	277.26	203.21	200.31	
Sr	469.96	432.89	1138.04	474.59	407.06	511.55	433.60	414.23	402.42	
Pb	5.61	13.80	4.09	7.22	7.07	5.53	8.31	6.94	6.59	
Ni	40.00	12.00	80.00	30.00	31.00	33.00	34.00	34.00	38.00	
Co	32.00	11.00	37.00	40.00	44.00	33.00	38.00	24.00	27.00	
Cr	35.00	10.00	110.00	44.00	37.00	22.00	27.00	59.00	80.00	
V	200.00	91.00	130.00	230.00	220.00	200.00	200.00	200.00	250.00	
Zr	150.90	111.09	183.33	153.08	154.38	107.57	162.57	164.45	165.08	
H f	3.93	2.84	4.53	4.57	3.50	2.39	4.06	4.06	4.00	
La	13.65	20.14	22.26	18.02	15.18	10.54	17.38	15.40	13.67	
Ce	31.95	43.58	43.63	41.67	34.90	23.93	41.86	37.28	33.91	
Pr	4.82	5.70	4.96	4.79	4.73	3.32	5.47	4./1	4.30	
Nd	24.06	25.91	24.69	27.80	22.07	15.68	25.51	22.04	20.62	
Sm	5.87	5.53	5.57	6.02	5.57	4.24	6.44	5.36	5.14	
Eu	1.64	1.57	1.73	1.56	1.64	1.27	1.82	1.58	1.52	
Ga	5.30	3.33	3.98	5.84	5.75	4.26	0.79	5.49	5.61	
16	0.94	0.86	0.66	1.04	0.93	0.67	1,10	0.92	0.92	
Dy	5.70	5.41	3.77	5.76	5.75	4.13	0.04	3. /8	5.50	
HO E	1.12	1.04	0.78		1.10	0.84	1.39	1.18	1.18	
Er	3.18	2.89	2.08	3.05	3.39	2.40	3.93	3.39	3.29	
1 III Vh	0.52	0.40	0.38	0.02	0.33	0.38	3.61	3.10	0.57	
10	0.54	0.34	0.26	4.00	0.47	0.22	0.56	0.47	0.45	
LU	5.09	0.34 7.20	24.90	4.00	5.27		5.78	6.25	0.43	
NU	20.96	7.20	24.00	4.90	3.27	3.41	40.57	24.28	22 77	
To To	0.33	0.47	197	0.35	0.01	20.05	-+0.37	0.40	0.42	
14 Th	1.61	3 36	2.07	2.40	2.21	1.51	2.68	2.04	1.96	
Se	38.02	18.50	2.92	43.17	43.40	38.87	38 73	34.03	33.16	
Ga	12 00	13.00	14.00	14.00	15.00	1100	15.00	13.00	14.00	
Cs.	0.86	2 43	1 07	1 /00	0.68	0.52	0.34	1.03	A 97	
	0.00	1.74		0.51	0.00 0.40	0.34	0.54	0.50	0.52	
Be	0.50	1.60	1.26	1 20	1 30	0.00 0.00	130	1 20	1 20	
B	16.00	6.00	12.00	17.00	18.00	10.00	12.00	17.00	27.00	
⁸⁷ Sr/ ⁸⁶ Sr	0.7042900	-		0.7043800	-			-		

* Возраст вулканического комплекса в месте отбора пробы по литературным данным

.

Рис. 3. Содержания петрогенных и микроэлементов, нормализованные к среднему базальтов срединно-океанических хребтов (MORB) [16].

1 – позднемсловые-палеогеновые; 2 – миоценовые; 3-4 – опубликованиые [6, 8–15] аналитические данные по позднемеловым-палеогеновым (3) и миоценовым (4) базальтоидам.

ставили 0.71028 ± 0.00002 и 0.70372 ± 0.00002, соответственно. Измерения К-Аг возрастов вулканических пород проводились на масс-спектрометре МИ-1201, усовершенствованиом для одновременного измерения масс аргона 36 и аргона 40 методом изотопного разбавления. Разбавление осуществлялось воздушным аргоном. Концентрации калия определялись по трем навескам фотометрией пламени с погрешностью измерений, обычно не превышавшей 1.5%. Общая погрешность определения К-Аг возраста складывалась из инструментальных погрешностей измерений калия и радиогенного аргона.

ГЕОХИМИЯ ПОЗДНЕМЕЛОВЫХ – МИОЦЕНОВЫХ БАЗАЛЬТОВ

По содержанию калия основные вулканиты позднемелового-палеогенового возраста относятся к высококалиевой и умереннокалиевой сериям (рис. 2). По основным геохимическим характерисгикам они являются типичными субдукционными образованиями с повышенной глиноземистостью (таблица), высокими концентрациями крупноионных литофильных элементов (LILE) и Th, низкой гитанистостью и низким уровнем содержания выокозарядных катионов (HFSE) (рис. 3). На диссриминантных диаграммах фигуративные точки юзднемеловых-палеогеновых пород располагаются в нолях базальтов современных островодужных систем (рис. 4).

Раннеэоценовые вулканиты, ввиду их ограниченного распространения, изучены слабо. От позднемеловых-палеогеновых субдукционных базальтов они отличаются сравнительно низкими содержаниями радиогенного стронция (рис. 5).

Геохимические отличия миоценовых базальтов от более ранних по времени извержения, субдукционных, проявлены очень отчетливо. Наряду с низкими концентрациями радиогенного стронция (рис. 5), породы этого возрастного интервала характеризуются пониженной щелочностью (рис. 2), низкими концентрациями крупноионных литофильных элементов (Cs, Rb, Ba) и Th, повышенными – MgO, Ni, Ti и тяжелых лантаноидов (рис. 3). В целом, по геолого-геохимическим характеристикам породы этого возраста близки к эоценолигоценовым лавам восточного Сихотэ-Алиня [3, 4], формирование которых происходило на начальных этапах разрушения субдукционной плиты трансформными разломами с формированием субдукционных окон.

ПЕТРОГЕНЕЗИС

В соответствии с миоценовой моделью раскрытия Японского моря, формирование всех домиоценовых магматических толщ юга Корейского

Рис. 4. Классификационные диаграммы Ti/V [17] и Th--Hf--Nb [18] (с дополнениями авторов) для позднемеловых-кайнозойских базальтов юга Корейского попуострова.

Условные обозначения см. рис. 2.

Полями показаны составы базальтор: на диаграммах показаны составы базальтов островных дуг (IA), Гавайских островов (НАW), палеоген-рашнемиоценового (SAH) и позднемиоцен-раннеплиоценового комплексов (SAP) Восточного Сихотэ-Алиня; на диаграмме 2В – срединно-океанических хребтов (А), срединно-океанических хребтов и внутриплитных обстановок (В), внутриплитных обстановок (С), островных дуг и активных контицентальных окраиц (D). Источник данных: [6, 8-15].

полуострова связывают с субдукцией под Азиатскую континентальную окраину Тихоокеанской плиты, а более молодых - с постсубдукционным рифтогенезом [8]. Среди последних, выделяются миоценовые лавы синхронные раскрытию Японского моря, и плиоцен-четвертичные.

Данные, полученные в результате наших исследований, дают основание полагать, что только позднемеловые-палеогеновые вулканиты юга Корейского полуострова (79-57 млн. лет) являются типичными субдукционными образованиями. Формируя Южнокорейско-Японский вулка-

нический пояс, они по основным геохимическим признакам близки к базальтам современных островодужных обстановок.

Начиная с эоцена, характер вулканизма в пределах юга Корейского полуострова существенно меняется. Значительно сокращается объем кислых лав, а центры вулканической активности смещаются к северу и северо-востоку, к побережью Японского моря. Кроме того, меняются и изотопно-геохимические характеристики основных вулканитов, что, в совокупности, дает основание предполагать смену геодинамического режима формирования рассматриваемой территории.

Рис. 5. Вариации изотопных характеристик позднемеловых - кайнозойских базальтов юга Корейского полуострова в зависимости от времени излиящия.

Условные обозначения см. рис. 2. Залитое полс – составы кайнозойских высокоглиноземистых и внутриплитных базальтов Восточного Сихотэ-Алиня по [3, 4].

Источник данных [8, 9, 15].

Рис. 6. Вариации Rb/Nb отношения в позднемеловых-кайнозойских базальтах юга Корейского полуострова в зависимости от времени излияния. Условные обозначения см. рис. 2. Источник данных [6, 8–15].

Типичной особенностью позднемелового-кайнозойского вулканизма восточной окраины Евразии является резкое изменение изотопно-геохимических характеристик основных вулканических пород на сравнительно небольшом временном интервале. Такие "геохимические скачки", вне зависимости от механизма их происхождения, фиксируют изменение условий магмогенезиса, а,

Рис. 7. Вариации Th/Nb отношения в позднемеловых-кайнозойских базальтах юга Корейского полуострова в зависимости от времени излияния.

Условные обозначения см. рис. 2. Источник данных [6, 8–15].

следовательно, динамику взаимодействия океанической и континентальной литосфер в зоне перехода континент-океан. Наиболее ранний из известных геохимический скачок, с резким уменьшением концентрации калия, Rb. Ba, Th (таблица), Rb/Nb (рис. 6), Th/Nb (рис. 7) и ⁸⁷Sr/⁸⁶Sr отношений (рис. 5), наблюдается в позднемеловых – палеогеновых базальтах юга Корейского полуострова. Изменение геохимических характеристик основных дав связано, главным образом, с уменьшением содержания в них, так называемого, "субдукционного" компонента (рис. 8). Последний включает в себя две группы элементов высокоподвижные в водном магматическом флюиде (U, Ba, Rb) и инертные (Ce, Th, 87 Sr). Именно последние играют определяющую роль в изменении геохимических характеристик описываемых эффузивов (рис. 9, 10, 11, 12). Учитывая, что содержание инертных субдукционных элементов контролируется, главным образом, степенью вовлечения в магмогенезис континентального осадочного материала [20], можно предполагать, что на границе позднего мела и палеогена происходило изменение векторов перемещения океанической и континентальной плит, возрастание сжимающих напряжений в зоне их взаимодействия, с последующим прекращением субдукции.

Изменение геодинамического режима формирования восточной окраины Евразии в позднем мелу или на рубеже позднего мела и палеогена, подтверждается многочисленными геологическими данными. В восточном и северо-восточном Китае начало структурной перестройки прослеживается с палеогена. В эоцене фиксируется активизация древних и развитие новых систем сдвиговых нарушений северо-восточной - юго-западной ориентировки, которые сопровождались формированием синсдвиговых седиментационных бассейнов и интенсивным внутриплитным базальтовым вулканизмом [21]. Активизация тектонических событий рассматривается как результат коллизии Индийской континентальной плиты и вариаций направления конвергенции Тихоокеанской океанической плиты. На Корейском полуострове и в восточном Сихотэ-Алине на рубеже позднего мела и палеогена наблюдается смена характера и локализации вулканической активности. Уже раннепалеогеновые эффузивы богопольского комплекса восточного Сихотэ-Алиня (59.68-52.92 Ма) формируют наложенные структуры депрессионного типа в тылу мелового вулканического пояса и отличаются крайне восстановительными условиями кристаллизации, нетипичными для субдукционных вулканитов [22].

Следующий изотопно-геохимический скачок (рис. 5) фиксируется в высокоглиноземистых ба-

Рис. 8. Классификационные диаграммы La-Ba, La-Th, La-Nb [19] для позднемеловых-кайнозойских базальтов юга Корейского полуострова. Условные обозначения см. рис. 2.

Источник данных [6, 8–15].

Рис. 9. Диаграмма Ва/К – ⁸⁷Sr/⁸⁶Sr [20] lkz позднемеловых-кайнозойских базальтов юга Корейского полуострова

Условные обозначения см. рис. 2.

Источник данных [8].

зальтах восточного Сихотэ-Алиня с возрастом излияния 40–35 млн. лет [3, 4]. Этим временем в Сихотэ-Алине датируется начало формирования ряда угленосных бассейнов (Артемовско-Тавричанского, Лучегорского и др.) [23] и пик вулканической активности, связанной с излиянием основного объема базальтовых лав, имеющих переходные геохимические характеристики между типично субдукционными и внутриплитными [3, 4]. Это дает основание связывать происхождение эоцен-олигоценового геохимического скачка в продуктах магматизма с активизацией трансформных разломов, разрывом древней субдукционной пластины, формированием субдукционных окон и внедрением горячей, деплетированной астеносферной мантии в субконтинентальную литосферу.

Изменение изотопно-геохимических признаков базальтовых лав восточного Сихотэ-Алиня в интервале 25–23 млн. лет (рис. 5) соответствует резкому возрастанию интенсивности перемещений вдоль Хоккайдо-Сахалинской и Цусимской систем окраинно-континентальных правых сдвигов, с формированием серий бассейнов синсдвигового растяжения, в том числе и глубоководных впадин Японского моря ("pull-apart" стадия его раскрытия) [24, 25, 26 и др.]

Наиболее молодой геохимический скачок, связанный с резким уменьшением содержания радиогенного стронция (от 0.7041–0.7055 ⁸⁷Sr/⁸⁶Sr до 0.7040–0.7029 ⁸⁷Sr/⁸⁶Sr) был зафиксирован в интервале 14–17 млн. лет в базальтах тыловой зоны Японии [27, 2 и др.]. Его происхождение связывают с внедрением деплетированной астеносферной мантии в субконтинентальную литосферу на заключительной стадии раскрытия Японского

Рис. 10. Диаграмма U/Th-Th [20] для позднемеловых-кайнозойских базальтов юга Корейского полуострова Условные обозначения см. рис. 2.

ГЕОХИМИЯ № 6 2006

Рис. 11. Диаграмма Ba/Th – ⁸⁷Sr/⁸⁶Sr [20] для позднемеловых-кайнозойских базальтов юга Корейского полуострова Условные обозначения см. рис. 2.

моря, связанной с вращением блоков пра-Японии, оторвавшихся от Евразии [28].

Таким образом, полученные нами данные, а также анализ опубликованной информации свидетельствуют о необходимости выделения, по крайней мере, 4 этапов геодинамической перестройки восточной окраины Евразии. Наиболее

Рис. 12. Диаграмма Th/Ce – ¹⁴³Nd/¹⁴⁴Nd [20] для позднемеловых-кайнозойских базальтов юга Корейского полуострова по литературным данным. Условные обозначения см. рис. 2. Источник данных [9]. древний из них фиксируется в познемеловых-палеогеновых базальтах юга Корейского полуострова.

Работа выполнена при финансовой поддержке гранта РФФИ №№ 03-05-65218 и 02-05-65326, интеграционных грантов Сибирского и Дальневосточного отделений РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Otofuji Y., Matsuda T., Nohda S. Opening mode of the Japan Sea inferred from the paleomagnetism of the Japan arc // Nature. 1985. V. 317. P. 603–604.
- Shuto K., Kagami H., Yamomoto K. Temporal variation of Sr isotopic compositions of the Cretaceous to Tertiary volcanic rocks from Okushiri island, Northeast Japan Sea // Journ. Min. Pet Econ. Geol. 1992. V. 87. P. 165–173.
- Мартынов Ю.А. Геохимия базальтов активных континентальных окраин и зрелых островных дуг на примере северо-западной Падифики. Владивосток: Дальнаука, 1999. 215 с.
- 4. Мартынов Ю.А. Высокоглиноземистый базальтовый вулканизм Восточного Сихотэ-Алиня: петрология и геодинамика // Петрология. 1999. Т. 7. № 1. С. 58–79.
- Ханчук А.И., Голозубов В.В., Мартынов Ю.А., Симаненко В.П. Раннемеловая и палеогеновая трансформные континентальные окраины (калифорнийский тип) Дальнего Востока России // Тектоника Азии. М.: ГЕОС. 1997. С. 240–243.
- Федорчук А.В., Филатова Н.И. Кайнозойский магматизм Северной Кореи и геодинамические об-

становки его формирования // Петрология. 1993. Т. 1. С. 645-656.

- Geology of Korea. Seoul: Keohak-Sa Publishing Co. 1987, 564 p.
- Pouclet A., Lee J.-S., Vidal P. et al. Cretaceous to Cenozoic volcanism in South Korea and in the Sea of Japan: magmatic constraints on the opening of the back-arc basin // Volcanism Associated with Extension at Consuming Plate Margins / Ed. Smellie J.L. Geological Society Special Publication. 1995. № 81. P.169–191.
- Shimazu M., Yoon S, Tateishi M. Tectonic and volcanism in the Sado-Pohang Belt from 20 to 14 Ma and opening of the Yamato Basin of the Japan Sea // Tectonophysics. 1990, V.181. P. 321–330.
- Song S., Lee H.K., Yun H. Petrogenesis of tertiary volcanic rocks from the southeastern part of Korea // Tectonic Evolution of Eastern Asian Continent / Ed. Lee, Y.I. and Kim J.H. Geol. Soc. Korea 50th Anniv. Int. 1 Symp. 1997, P. 219–224.
- Hwang S.K., Kim S.W. Petrology of Cretaceous volcanic rocks in the Milyang-Yangsan area, Korea: petrotectonic setting // Jour. Geol. Soc. Korea. 1994. V. 30. P. 229– 241.
- Kim K.H., Lee J.S. Petrochemical studies of the Cretaceous volcanic rocks from the Kyeongsang sedimentary basin // Jour. Geol. Soc. Korea. 1993. V. 29. P. 84–96.
- Kim C.S., Yun S.H., Cheong C.S. Volcanic stratigraphy and petrology of the Cretaceous volcanine rocks in the Mt. Sinbul-Youngchui area, Korea // Jour. Geol. Soc. Korea. 1998. V.34. P.137–153.
- Won C. K., Lee M. W., Lee J. M. A study on the Cretaceous volcanic activity of the Bupseongpo Area // Jour, Geol, Soc. Korea, 1991. V. 27. P. 416–433.
- Yun S.H. Strontium isotope composition and petrochemistry of the Cretaceous Chaeyaksan Volcanics, northern Yucheon volcanic field, South Korea // Jour. Geol. Soc. Korea, 1998. V. 34. P. 161–171.
- Pearce J.A., Parkinson I. J. Trace element model for mantle melting: application to volcanic arc petrogenesis // Magmatic Processes and Plate Tectonics. Geol. Soc. Special Public 1993. № 76. P. 373–403.
- Shervais I.W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas // Earth. Planet Sci Lett 1982. V. 59. № 1. P. 101–118.

- Wood D.A. The application of Th-Hf-Ta diagrams to problem of tectonomagmatic classification and to establish British Titiry volcanic province // Earth. Planet. Sci. Lett. 1980. V. 50. P. 11-30.
- 19. Gill J.B. Orogenic Andesites and Plate Tectonics. Berlin: Springer-Verlag, 1981. 389 p.
- Hawkesworth C., Turner S., Peate D. et al. Elemental U and Th variations in island arc rocks: implications for U-series isotopes // Chemical Geology. 1997. V. 139. P. 207-221.
- Fan Q., Hooper P.R. The Cenozoic basaltic rocks of Eastern China: Petrology and chemical composition // Journal of Petrology. 1991, V. 32. part 4. P. 765–810.
- 22. Grebennikov A.V. The ignimbrites of Yakutinskaya volcanic depression, Primorye, Russia // R. Seltmann, G. Gonevchuk, A. Khancuk eds. Anatomy and textures of ore-bearing granitoids of Sikhote Alin (Primorye Region, Russia) and related mineralisation. International field conference in Vladivostok, Russia. 1998. GFZ Press. Potsdam. P. 25-31.
- Павлюткин Б.И., Петренко Т.И. К стратиграфии третичных отложений юго-восточной окраины Ханкайского массива // Тихоокеанская геология. 1994. № 2. С. 18–28.
- Lallemand S., Jolvet L. Japan Sea: pull-apart basin? // Earth and Planetary Science Letters. 1986. V. 76. P. 375–389.
- Tamaki K. K., Suyhiro J., Allen J.C., Pisciotto K. Tectonic sitesis and implications of Japan Sea ODR drilling // Proc. Ocean Drill. Program Sci. Results. 1992.
- Yoon S.H., Chough S.K. Regional strike-slip in the eastern continental margin of Korea and its tectonic implications for the evolution of Ulleung basin, East Sea (Sea of Japan)//GSA Bulletin. 1995. V. 107. № 1. P. 83-97.
- Nohda S., Tatsumi Y., Otofuji Y. et al. Asthenospheric injection and back-arc opening: isotopic evidence from Northeast Japan // Chemical Geology. 1988. V. 68. P. 317–327.
- Otofuji Y. Large tectonic movement of the Japan Arc in Late Cenozoic times inferred from paleomagnetism; revive and synthesis // The Island Arc. 1996. V. 5. P. 229–249.