= ГЕОХИМИЯ =

УДК 552.16

О БУФЕРИРОВАНИИ ПОТЕНЦИАЛА СО₂ МИНЕРАЛЬНЫМИ АССОЦИАЦИЯМИ

© 2009 г. О.В.Авченко

Представлено академиком В.В. Ревердатто 16.04.2008 г.

Поступило 04.05.2008 г.

Парциальное давление CO₂ во флюиде можно определить по кальцитсодержащим парагенезисам, развитым в известково-силикатных породах. Если, например, в известково-силикатных метаморфических породах наблюдается парагенезис граната, плагиоклаза, кварца и кальцита, то по термодинамическому уравнению для минального соотношения*

$$An + Q + 2Cc = Gross + 2CO_2.$$
(1)

и известному составу граната и плагиоклаза возможно определить парциальное давление СО2 во флюиде. Однако возникает вопрос, к какому флюиду относится полученная оценка давления CO₂: к внутреннему (локальному) флюиду, потенциал которого задается (буферируется) собственным химическим составом известково-силикатной породы (минальной реакции типа 1), или к внешнему (региональному) флюиду, поступающему в процессе метафорфизма во вмещающие породы извне, который, наоборот, задает состав минеральной ассоциации. Согласно основам физико-химического анализа парагенезисов минералов [1] первый случай характеризует инертное поведение СО2, тогда как второй – "вполне подвижное". Обычно принимается, что СО₂ при метаморфизме вполне подвижен [2], а это означает, что активность СО2, вычисляемую по реакции типа 1, следует всегда относить к внешнему флюиду. Однако с помощью метода выпуклого программирования [3] можно показать, что в природе случаи буферирования минеральными ассоциациями потенциала СО₂ отнюдь не столь редки, как это принято считать. Обратимся к кон-

Дальневосточный геологический институт Дальневосточного отделения Росийской Академии наук, Владивосток кретному примеру кальцитсодержащих парагенезисов.

В пределах станового метаморфического комплекса, развитого на юге Алдано-Станового щита, известково-силикатные породы встречаются главным образом только в пределах площади развития удско-майской серии [4]. Здесь они составляют незначительную по объему, однако весьма характерную группу пород, представленную кальцифирами, в том числе гранатовыми, биотит-диопсидовыми, диопсид-гранатовыми и цоизитсодержащими разностями. Величина парци-

Рис. 1. Модель взаимодействия карбонатно-силикатной породы с водным флюидом. Заштрихованная часть в резервуарах 0–4 – доля флюида относительно

породы (мас. %). Видно увеличение отношения $\frac{P_{\rm CO_2}}{P_{\rm H_2O}}$

(штриховые отрезки прямых) по мере уменьшения доли флюида.

^{*}Индексы минералов и миналов: Gr – гранат; Bi – биотит; Di – диопсид; Cc – кальцит; Pl – плагиоклаз; Zo – циозит; Q – кварц; Sph – сфен; An – анортит; Gross – гроссуляр;

Таблица 1. Состав флюида в зависимости от отношения флюид/порода (W/R, мас. %), T = 630°C, $P_S = 11500$ бар. В модели А в резервуаре "0" находится существенно водосодержащий флюид, тогда как в модели В – углекислотный

Параметр	0	1	2	3	4			
Модель А								
$\frac{W}{R}$, мас. %	R = 0	10.5	7.6	2	0.00001			
$\frac{P_{\rm CO_2}}{P_{\rm H_2O}}$	0.02	0.14	0.38	0.64	0.9			
$\lg f_{\mathrm{O}_2}$	-18.9	-18.3	-18	-17.8	-17.8			
$P_{\rm H_2}$	17.6	8.5	4.7	3	2			
P_{CH_4}	116	55	16.9	2.8	4			
Модель В								
$\frac{W}{R}$, мас. %	R = 0	13.6	2.8	0.28	0.00005			
$\frac{P_{\rm CO_2}}{P_{\rm H_2O}}$	7.8	5.7	1.9	0.8	0.7			
$\lg f_{O_2}$	-17.5	-17.5	-17.6	-17.7	-17.8			
$P_{\rm H_2}$	0.4	0.5	1.5	2.9	3.1			
P_{CH_4}	0.1	0.3	1.6	0.3	7.3			

Примечание. $P_S = P_{f1} = P_{H_2O} + P_{CO_2} + P_{H_2} + \dots; P_S$ – литостатическое давление, P_{f1} – давление флюида.

ального давления CO₂ определена в работе [4] в минеральных парагенезисах

 $\begin{aligned} & \text{Gr} + \text{Bi} + \text{Di} + \text{Cc} + \text{Pl} + \text{Zo} + \text{Q} + \text{Sph}, (\text{odp. 2155-a}), \\ & \text{Gr} + \text{Cc} + \text{Di} + \text{Pl} + \text{Q} + \text{Sph} + \text{Gf} (\text{odp. 719-a}), \end{aligned}$

по термодинамическим уравнениям минальных реакций

 $An + Q + 2Cc = Gross + 2CO_2, \qquad (1)$

$$2Z_0 + CO_2 = 3A_n + C_c + H_2O_c$$
 (2)

Расчет был выполнен по уравнениям Дж. Ферри [5] и Е. Гента [6] с учетом активностей компонентов анортита и гроссуляра в твердых растворах плагиоклаза и граната. Согласно проведенным расчетам, при $P_s = 9-10$ кбар, $T = 600^{\circ}-700^{\circ}$ С давление СО₂ во флюиде было высоким – не менее 5–8 кбар. Если принять за основу флюид, состоящий главным образом из СО₂ и H₂O, то вели-

чина отношения $\frac{P_{CO_2}}{P_{H_2O}}$ лежит в интервале 1–4. Для

анализа этих данных на последней версии программного комплекса "Селектор-С" [7] нами была выполнена модель, состоящая из пяти резервуаров (рис. 1). В резервуар "0" помещался существенно водный флюид (1.6 г), насыщенный по

отношению к графиту, отношение
$$\frac{P_{\rm CO_2}}{P_{\rm H_2O}}$$
 в кото-

ром составляло всего 0.02. Из нулевого резервуара водный флюид поступал в резервуары 1–4, причем количество флюида в последовательности резервуаров 1–4 уменьшалось, что наглядно показано на рис. 1 и в табл. 1 (модель А). В резервуарах 1–4 находилось по 16 г одной и той же известково-силикатной породы:

Окислы SiO₂ Al₂O₃ Fe MnO MgO CaO Na₂O CO₂ Σ Mac. % 65.51 10.14 6.09 1.57 2.38 12.15 1.43 0.74 100.01

Расчет модели проводили на основе внутренне согласованных термодинамических баз данных по миналам и газам [8, 9] и с учетом твердых растворов [10]. Видно, что по мере уменьшения отношения флюид/порода во флюиде закономерно возрастает отношение $\frac{P_{\rm CO_2}}{P_{\rm H_2O}}$, достигающее в последнем резервуаре, где флюид присутствует в исчезающее малых количествах, величины 0.9 (рис. 1 и табл. 1, модель А). При этом в резервуаре 4 при $T = 630^{\circ}$ С, $P_{S} = 11500$ бар образовалась минеральная ассоциация, полностью отвечающая по составу и набору минералов парагенезису обр. 719-а (табл. 2, 3, модель А).

Совершенно очевидно, что нельзя говорить о том, что величина парциального давления CO₂, вычисляемая по составу минералов обр. 719-а, относится к внешнему флюиду, который в модели

имеет отношение
$$\frac{P_{CO_2}}{P_{H_1O}} = 0.02$$
. Видно, что в резер-

вуарах 1-3 состав флюида есть результат сложной комбинации внешнего и внутреннего флюида, а в резервуаре 4 потенциал СО₂ задан полностью минеральной ассоциацией без участия внешнего флюида или собственным химическим составом породы. С увеличением количества внешнего водосодержащего флюида (в направлении от резервуара 4 к 1) в минеральных парагенезисах уменьшается количество кальцита, вплоть до полного его исчезновения в резервуаре 1, и возрастает количество цоизита. Изменения количеств других минералов невелики. Таким образом, в резервуаре 1 образуется минеральный парагенезис, очень близкий к безкальцитовому парагенезису обр. 2157-г, описанному в работе [4] (табл. 2, 3]. Поэтому вполне возможно, что и в природе этот парагенезис образовался вследствие ин-

ДОКЛАДЫ АКАДЕМИИ НАУК том 424 № 1 2009

Таблица 2. Состав минералов в модельном парагенезисе в сопоставлении с реальными составами минералов по работе [4] (модель A (рис. 1), T = 630°C, $P_S =$ = 11500 бар; состав флюида в табл. 1)

Пара- метр	1		2	2 3		4	
	Мо- дель А	Обр. 2157-г	Мо- дель А	Мо- дель А	Мо- дель А	Обр. 719-а	
$x_{\rm Fe}^{\rm Gr}$	0.91	0.92	0.906	0.84	0.81	0.81	
x_{Ca}^{Gr}	0.56	0.53	0.56	0.45	0.41	0.43	
x_{An}^{Pl}	0.18	0.23	0.20	0.24	0.27	0.26	
$x_{\rm Fe}^{\rm Cpx}$	0.43	0.41	0.41	0.29	0.25	0.30	

Примечание. Здесь и в табл. 3: x_{Fe}^{Gr} – железистость (Fe/Fe + Mg), x_{Fe}^{Cpx} – клинопироксена; x_{Ca}^{Gr} – кальциевость (Ca/Ca + Fe + Mg) граната и x_{An}^{Pl} – содержание анортита в плагиоклазе.

фильтрации существенно водного флюида в кальцитсодержащие ассоциации типа обр. 719-а.

Таким образом, мы получаем свидетельство в поддержку вывода, что внешний флюид при метаморфизме удско-майской серии был, вероятно, существенно водный, а высокое парциальное давление CO₂, вычисляемое по минеральным ассоциациям методом минальных реакций, характеризует именно внутренний флюид или комбинацию внутреннего и внешнего флюида. Если в нулевой резервуар поместить существенно углекислотный

флюид, в котором отношение $\frac{P_{\rm CO_2}}{P_{\rm H_2O}} = 7.8$ (табл. 1,

модель В), то инфильтрация такого флюида (с последовательным уменьшением его количества) приводит к образованию кальцит-доломитовых ассоциаций (помимо граната, плагиоклаза и кварца) в резервуарах 1–2 (табл. 3, модель В). Но в резервуаре 4, где внешнего углекислотного флюида практически нет, вновь образуется такой же парагенезис, как и в модели А (табл. 3, модель В).

Таким образом, результаты термодинамического моделирования равновесных минеральных ассоциаций с помощью программного комплекса "Селектор-С" показывают, что оценки состава флюида, полученные на основе термодинамического расчета реакций карбонатизации, дают информацию о составе главным образом внутреннего флюида или сложной комбинации внутреннего и внешнего флюида. Для корректной оценки состава внешнего флюида и его эволюции необходимо иметь данные по зональности минеральных ассоциаций, развивающихся в известково-си-

ДОКЛАДЫ АКАДЕМИИ НАУК том 424 № 1 2009

Таблица 3. Объемные количества (см³) минералов в зависимости от отношения флюид/порода (*W/R*, мас. %) и состава начального флюида; $T = 630^{\circ}$ С, $P_S = 11500$ бар. В модели А в резервуаре 0 находится существенно водосодержащий флюид, тогда как в модели В – углекислотный

Состав	1	2	3	4				
Модель А								
<i>W/R</i> , мас. %	10.5	7.6	2	0.00001				
Клинопироксен	1.2	1.2	0.8	0.7				
Кальцит	—	0.02	0.3	0.37				
Доломит	-	-	-	-				
Гранат	1.0	1.08	1.17	1.25				
Графит	0.004	0.002	0.0003	0.0002				
Плагиоклаз	0.5	0.6	0.74	0.8				
Кварц	2.2	2.2	2.3	2.38				
Цоизит	0.3	0.2	0.1	0.00002				
$x_{\rm Fe}^{\rm Gr}$	0.91	0.91	0.84	0.81				
x_{Ca}^{Gr}	0.56	0.56	0.45	0.44				
x_{An}^{Pl}	0.18	0.20	0.24	0.27				
$x_{\rm Fe}^{ m Cpx}$	0.43	0.41	0.29	0.25				
	Мо	дель В	1	·				
<i>W/R</i> , мас. %	13.6	2.8	0.28	0.00005				
Клинопироксен	-	-	0.7	0.73				
Кальцит	0.65	0.63	0.41	0.37				
Доломит	0.45	0.42	-	-				
Гранат	1.08	1.17	1.2	1.25				
Графит	-	-	следы	0.0002				
Плагиоклаз	1.1	1.02	0.8	0.8				
Кварц	2.8	2.8	2.4	2.38				
Цоизит	—	-	0.03	-				
$x_{\rm Fe}^{\rm Gr}$	0.84	0.81	0.80	0.81				
x_{Ca}^{Gr}	0.27	0.31	0.41	0.44				
x_{An}^{Pl}	0.31	0.26	0.26	0.27				
$x_{\rm Fe}^{ m Cpx}$	_	_	0.24	0.25				

ликатных породах в связи с инфильтрацией метаморфогенного флюида.

Работа поддержана грантами ДВО 06-Ш-А-08-483 и РФФИ 08-05-00106-а.

СПИСОК ЛИТЕРАТУРЫ

1. Коржинский Д.С. Теоретические основы анализа парагенезисов минералов. М.: Наука, 1973. 287 с.

- 2. *Маракушев А.А.* Петрология метаморфических горных пород. М.: Изд-во МГУ, 1973. 321 с.
- 3. *Карпов И.К.* Физико-химическое моделирование в геохимии. Новосибирск: Наука, 1981. 246 с.
- 4. Козырева И.В., Авченко О.В., Мишкин М.А. Глубинный метаморфизм позднеархейских вулканогенных поясов. М.: Наука, 1985. 165 с.
- 5. *Ferry J.M.* // Contribs Miner. and Petrol. 1976. V. 57. № 2. P. 119–145.
- Ghent E.D., Robbins D.B., Stout M.Z. // Amer. Miner. 1979. V. 64. P. 874–886.
- 7. *Чудненко К.В.* Теория и программное обеспечение метода минимизации термодинамических потенциалов для решения геохимических задач. Автореф. дисс. на соискание уч. ст. докт. геол.-мин. наук. Иркутск. 2007. 54 стр.
- 8. *Holland T.J.B., Powell R.* // J. Metamorph. Geol. 1998. V. 16. № 3. P. 309–343.
- 9. Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей. Л.: Химия, 1982. 591 с.
- Авченко О.В., Александров И.А., Чудненко К.В. // Электрон. журн. "Исследовано в России". 2007. С. 707–719. http://zhurnal.ape.relarn.ru/articles/2007 /068.pdf.