— ГЕОХИМИЯ —

УДК 552.16

ОПЫТ МОДЕЛИРОВАНИЯ РЕАКЦИИ ГРАНАТ ↔ ОРТОПИРОКСЕН + ШПИНЕЛЬ + ПЛАГИОКЛАЗ МЕТОДОМ МИНИМИЗАЦИИ ТЕРМОДИНАМИЧЕСКОГО ПОТЕНЦИАЛА

© 2007 г. О. В. Авченко, С. В. Высоцкий, К. В. Чудненко

Представлено академиком А.М. Ханчуком 05.07.2006 г.

Поступило 08.08.2006 г.

Физико-химическое моделирование минеральных ассоциаций на основе метода минимизации термодинамических потенциалов с учетом твердых растворов, как показано в работе [1], дает петрологам новые возможности, сравнительно с методом фазового соответствия. И хотя термодинамические базы конечных миналов и модели минеральных твердых растворов еще не совсем точны, высокая способность подхода с позиций минимизации в решении ряда петрологических проблем очевидна. Ниже показано применение этого метода в термодинамическом анализе реакционной структуры граната, для которой не удается получить оценку давления и фугитивности кислорода на основе известных термобарометров.

Во включениях щелочных базальтов Приморья из палеовулкана Конфетка [2] были обнаружены фрагменты трещиноватых кристаллов гранатов, которые по трещинам и периферии замещаются ортопироксен-шпинель-плагиоклазовым симплектитом (рис. 1). Местами в реакционной кайме обнаруживается яркооранжевый стильпномелан. Состав минералов в симплектите довольно специфичен (табл. 1). Ортопироксен обнаруживает значительные вариации глиноземистости, причем в контакте с гранатом ортопироксен менее глиноземист (2.9–3.4 мас.% Al_2O_3), чем в контакте со шпинелью и плагиоклазом (9.5-10.3. мас.% Al_2O_3). Плагиоклаз по своему составу также неоднороден. Его состав меняется от An_{84} до An_{60} . В то же время железистость ортопироксена и шпинели почти постоянна, но состав шпинели отличается пониженной степенью окисленности (Fe⁺³/ Σ Fe = = 8.1–11.8 ат. %, табл. 1). Неоднородность состава

Институт геохимии им. А.П. Виноградова

минералов подчеркивает неравновесность симплектитовой каймы, по крайней мере по потенциалу Al₂O₃.

Возникает вопрос о *РТ*-условиях замещения граната ортопироксен-шпинель-плагиоклазовым симплектитом, что могло бы пролить свет на генезис гранатовых включений. Температуру равновесия ортопироксен-шпинель можно приближенно оценить по уравнению Лерманна и Джанджули [3]:

$$T(\mathbf{K}) =$$

$$=\frac{1373(\pm 165) + 12.1P(\kappa 6ap) + 2558(\pm 180)X_{Cr}^{Sp}}{\ln K_{D} + 0.55(\pm 0.13)},$$

где $K_D = \frac{(\text{Fe}^{+2}/\text{Mg})^{\text{Sp}}}{(\text{Fe}^{+2}/\text{Mg})^{\text{Opx}}}, X_{\text{Cr}}^{\text{Sp}} - \text{хромистость ш пинели.}$

Это уравнение приводится для систем, обогащенных хромом. Вероятно поэтому рассчитанная для нашего случая оценка температуры равновесия ортопироксена и низкохромистой шпинели в реакционной кайме, равная 1100–1150°С, может быть несколько завышена. Более или менее точную оценку давления, при котором происходил распад граната, получить невозможно из-за отсутствия для ассоциации Орх–Pl–Sp надежных геобарометров и химической неравновесности сосуществующих минералов по потенциалу глинозема.

Попытаемся подойти к условиям образования симплектитовой структуры на основе метода минимизации с помощью программного комплекса "Селектор-С". Основы этого метода приводятся в работах [4, 5], подчеркнем только, что моделирование проводилось нами на основе внутреннесогласованной термодинамической базы [6] с учетом моделей твердых растворов для минералов граната, плагиоклаза, орто- и клинопироксена, кордиерита, амфибола, оливина, шпинели, ставролита и ильменита. Термодинамические свойства минеральных твердых растворов учитыва-

Чудненко Дальневосточный геологический институт Дальневосточного отделения Российской Академии наук, Владивосток

Сибирского отделения Российской Академии наук, Иркутск

Рис. 1. Строение реакционных прожилков в гранате. Микроанализатор JXA -8100. Gr – гранат, Орх – ортопироксен, Sp – шпинель, Pl – плагиоклаз.

лись преимущественно по моделям Холланда и Пауэла [7, 8]. Система SiO₂-TiO₂-Al₂O₃-Fe₂O₃-FeO-MnO-MgO-CaO-Na₂O-K₂O-H₂O-CO₂, рассчитываемая "Селектором-С", состояла из 50 компо-

нентов, слагающих главные наблюдаемые или возможные минералы гранулитовой фации: кварц, плагиоклаз, орто- и клинопироксен, гранат, кордиерит, амфибол, оливин, магнетит, гема-

Таблица 1. Химические составы (мас. %) и кристаллохимические формулы граната и минералов реакционной структуры

Компо-	Gr		Sp		Pl			Орх				
нент	1	2	3	4	5	6	7	8	9	10	11	12
SiO ₂	39.19	39.24	_	_	_	47.69	50.23	51.38	50.02	47.09	45.78	46.36
Al_2O_3	21.60	21.31	58.91	59.73	59.18	33.01	32.33	31.36	2.93	9.75	10.34	10.32
Cr_2O_3	-	-	0.12	0.35	0.25	-	-	-	-	-	-	-
Fe ₂ O ₃	-	-	3.90	3.29	3.55	-	-	-	-	-	-	-
FeO	22.62	22.54	26.13	26.41	26.97	0.94	1.25	0.77	28.29	28.16	27.06	26.84
MnO	0.92	0.88	0.52	0.45	0.49	-	-	-	1.14	1.14	1.10	0.97
MgO	9.65	9.37	9.17	9.39	8.89	-	-	-	16.35	14.54	15.04	15.04
CaO	5.96	5.79	-	-	-	16.22	14.92	12.26	0.87	0.69	0.62	0.76
Na ₂ O	-	_	-	-	-	1.43	1.44	4.07	-	-	-	-
K ₂ O	_	_	_	_	_	0.35	0.60	0.33	_	_	_	_
Сумма	99.94	99.13	98.75	99.62	99.33	99.63	100.77	100.77	99.59	101.36	99.93	100.28
Si	2.996	3.021	_	-	-	2.209	2.306	2.334	1.936	1.786	1.752	1.767
Al	1.945	1.993	1.918	1.932	1.926	1.801	1.749	1.678	0.134	0.436	0.466	0.463
Fe ²⁺	1.443	1.449	0.610	0.606	0.623	0.036	0.048	0.029	0.914	0.892	0.864	0.854
Fe ³⁺	-	-	0.082	0.068	0.074	-	-	-	-	-	-	-
Mn	0.059	0.057	0.012	0.01	0.011	-	_	-	0.037	0.036	0.036	0.031
Mg	1.099	1.075	0.378	0.384	0.366	-	_	-	0.943	0.822	0.857	0.854
Ca	0.488	0.478	-	-	-	0.805	0.733	0.596	0.036	0.028	0.025	0.031
Na	-	_	-	-	-	0.128	0.128	0.358	-	_	-	_
К	_	_	_	—	—	0.021	0.035	0.019	_	_	_	_
f, X_{An}	56.77	57.42	61.7	61.2	63	0.84	0.82	0.60	49.23	52.04	50.20	50.00

Примечание. Здесь и в табл. 2 и 4: Обозначение минералов: Gr – гранат, Sp – шпинель, Pl – плагиоклаз, Opx – ортопироксен, Ol – оливин. $f = Fe^{2+}/(Fe^{2+} + Mg)$ ат. %, X_{An} – содержание анортита в Pl. Fe_2O_3 в шпинелях рассчитано по стехиометрии. Прочерк – ниже предела обнаружения. Анализы минералов выполнены в ДВГИ на рентгеновском микроанализаторе JXA-8100, аналитик А.А. Карабцов.

ДОКЛАДЫ АКАДЕМИИ НАУК том 415 № 1 2007

Komoueut		Модель 1		Модель 2				
Komiloneni	Sp	Opx	Pl	Sp	Opx	Ol	Pl	
SiO ₂	_	49.93	46.83	_	49.85	33.59	46.83	
Al_2O_3	53.89	4.36	34.19	58.80	3.98	-	34.19	
Fe ₂ O ₃	10.73	—	_	4.18	—	-	-	
FeO	25.93	27.81	_	29.05	29.17	48.61	-	
MgO	9.45	17.89	_	7.97	17.00	17.80	-	
CaO	_	—	17.28		—	-	17.28	
Na ₂ O	-	_	1.68		_	-	1.68	
Сумма	100	99.99	99.98	100	100	100	99.98	
f, X _{An}	61	47	0.85	67	49	60.5	0.85	
Объемн. %	15	43	42	12.7	36.4	8.7	42.1	
$\lg f_{O_2}$		-9.14	•	-10.27				

Таблица 2. Химические составы (мас. %), объемные соотношения минералов и величина $\lg f_{O_2}$ в моделях 1, 2 при P = 4 кбар и T = 1000°C

тит, шпинель, самородное железо, графит, корунд, силлиманит, кианит, андалузит. Для ограничения решений включались также минералы амфиболитовой фации – эпидот, цоизит, ставролит. Флюид моделировался простой газовой системой, включающей шесть компонентов – H₂O, CO₂, CH₄, CO, H₂, O₂. При первом решении в задачу заводился "стандартный" флюид, состоящий из CO₂, C и H₂O в мольных количествах соответственно 0.001, 0.01, 0.004 на 100 породы. Это позволяло в модели получать массовое отношение флюид/порода примерно 1:30, что отвечало условиям буферирования флюида породой. В последующих решениях количества углерода и кислорода несколько изменялись, чтобы получить на выходе минеральную ассоциацию, максимально близкую к реально наблюдаемой.

Поскольку мы полагали, что реакционный парагенезис Орх–Pl–Sp появляется за счет распада главным образом граната, то в качестве исходного химического состава породы (вектора В) мы брали состав граната (№ 1, табл. 1), дополнив его небольшим количеством окиси натрия (0.59 мас. %), так как в реакционной кайме наблюдался плагиоклаз. Окись натрия в небольших количествах может входить в состав высокобарных гранатов, и, кроме того, первичный (дореакционный) парагенезис мог содержать небольшое количество клинопироксена, обогащенного жадеитом, и плагиоклаза.

Задача решалась на основе двух подходов (способов). В первом подходе температура образования реакционной каймы предполагалась известной, равной 1000°С, т.е. достаточно близкой к калибровке по ортопироксен-шпинелевому геотермометру [3]. При заданной температуре производился поиск давления, необходимого для образования парагенезиса Орх-Pl-Sp за счет вектора В. Во втором подходе определялся двухэлементный вектор температуры и давления $\theta^{T} = (T, P)$ в определенном, заранее заданном поле Т, Р. При этом решалась обратная задача выпуклого программирования, т.е. находилось оптимальное значение вектора θ , который минимизировал особую критериальную функцию – сумму квадратов отклонений известных (заданных) и рассчитываемых при различных значениях температуры и давления мольных количеств фаз системы. Другими словами, ставилась задача найти одновременно такие величины температуры и давления, при которых было бы возможным образование за счет вектора В парагенезиса Орх-Pl-Sp по мольным количествам фаз, максимально близким к наблюдаемой ассоциации. Поле Т, Р задавалось достаточно широким: интервал по температуре составлял 800-1100°С, а по давлению – 3–8 кбар.

Составы минералов и флюида, полученные по первому способу моделирования, приводятся в табл. 2, 3. Из них видно, что ассоциация Opx–Pl– Sp образуется за счет граната при величине давления 4 кбар, причем при величине логарифма фугитивности кислорода равной –9.14, образуется только эта тройная ассоциация (модель 1, табл. 2) , а при более высокой восстановленности флюида

Таблица 3. Химический состав и логарифм фугитивности кислорода модельного флюида при P = 4 кбар и $T = 1000^{\circ}$ С в моделях 1 и 2

Модель	CO ₂	СО	H ₂	H ₂ O	$\lg f_{O_2}$
1	30.5	0.06	0.01	69.43	-9.14
2	32.38	0.23	0.03	67.36	-10.27

Таблица 4. Количественные соотношения минеральных фаз (об. %) и величина $\lg f_{O_2}$ при изменении давления от 4 до 14 кбар при температуре 1000°С в модели 2

4

<i>Р</i> , кбар	Sp	Opx	Pl	Gr	Срх	Ol	$\lg f_{\mathrm{O}_2}$
4	12.7	36.4	42.1	_	_	8.7	-10.2
6	10.5	29.4	39.4	11.2	-	9.5	-10.1
8	3.3	-	16	73.2	-	7.5	-10.2
10	5	-	2	81	12	-	-10.3
12	3.9	-	0.1	85.2	10.8	-	-9.6
14	3.9	-	-	85.6	10.5	-	-9.7

 $(\lg f_{O_{\gamma}} = -10.3)$ к ассоциации Орх–Pl–Sp добавля-

ется небольшое количество оливина (модель 2, табл. 2). Как видно из сравнения табл. 1 и 2, железистость шпинели, ортопироксена, основность плагиоклаза в моделях 1 и 2 практически совпадают с реально наблюдаемыми составами этих минералов. Однако в модели 1 шпинель получается значительно более окисленной, чем в реальности. В модели 2 шпинель по степени окисленности близка к реальной (табл. 2, 3), и, если пренебречь небольшим количеством оливина, то мы имеем полную аналогию вычисленного парагенезиса с реально наблюдаемым. Эволюцию смены гранатового парагенезиса ортопироксен-шпинель-плагиоклазовой ассоциацией с понижением давления вдоль изотермы 1000°С можно проследить в табл. 4.

При моделировании по второму способу парагенезис Opx–Pl–Sp с небольшим количеством оливина возникал при давлениях от 4 до 4.5 кбар и изменении температуры от 800 до 950°С. *РТ* Вариации были связаны с разной степенью задаваемой окисленности системы. Наилучшее приближение к реальным составам достигалось при T = 845°С и P == 4.5 кбар при величине $\lg f_{O_2} = -12.4$. Появление небольшого количества оливина в рассчитанных моделях можно объяснять с разных точек зрения. Нельзя, к примеру, исключить того, что небольшое количество стильпномелана в кайме образовалось на самом деле за счет замещения оливина. Другое объяснение состоит в том, что вполне возможны некоторые неточности в термодинамической модели шпинелевого твердого раствора или в исходном составе вектора В. Кроме того, и сама структура несет отчетливые признаки неравновесности, так что полного совпадения вычисленной ассоциации с реально наблюдаемой и не должно было быть. Но, по-видимому, проведенное моделирование не оставляет сомнения в том, что действительно тройная ассоциация Opx-Pl-Sp образуется за счет граната, причем по составу, близкого к приведенному в табл. 1 (ан. 1) и при относительно низких давлениях <6 кбар. Но такие гранаты – с повышенной магнезиальностью и основностью, являются относительно высокобарными, а при величине давления более 10–12 кбар они могут входить в эклогитовый парагенезис (табл. 4). Поэтому следует полагать, что эти гранатовые ксенолиты попали в магму при повышенных давлениях, а затем претерпели относительно быструю транспортировку до промежуточного очага, образовавшегося на уровне 4-5 кбар. После кратковременного пребывания магмы на этом уровне произошло ее последующее излияние на дневную поверхность.

Работа выполнена при финансовой поддержке РФФИ и ДВО РАН (гранты 06-Ш-А–08–483, 06– 05–96057–р_восток_а)

СПИСОК ЛИТЕРАТУРЫ

- 1. Авченко О.В., Чудненко К.В. // ДАН, 2005. Т. 401, № 3. С. 378–383.
- 2. Высоцкий С.В., Баркар А.В. Сапфиры Приморья. Владивосток: Дальнаука, 2006, 106 с.
- Liermann H.P., Ganguly J.// Meteoritics and Planet. Sci. 2001. V. 36. P. 155–166.
- 4. *Карпов И.К.* Физико-химическое моделирование в геохимии. Новосибирск: Наука, 1981. 246 с.
- 5. Карпов И.К., Чудненко К.В. // ДАН. 2002. Т. 385. № 3. С. 401–405.
- Holland T.J.B., Powell R. // J. Metam. Geol. 1998. V. 16. P. 309–344.
- Powell R., Holland T.J.B. // Amer. Miner. 1993. V. 78. P. 1174–1180.
- Powell R., Holland T.J.B. // Amer. Miner. 1999. V. 84. P. 1–14.

ДОКЛАДЫ АКАДЕМИИ НАУК том 415 № 1 2007